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Abstract: Tomato is rich sources of minerals, vitamins, polyphenols, and carotenoids that are beneficial for human 
health. Chitosan and vanillin could be an elicitor to induced defense enzyme activities in host against pathogen 
causing disease. This study aimed to evaluate the effect of chitosan and vanillin coating on defense-related enzymes 
(PAL, PPO and POD) activites on tomato fruits during ambient storage Chitosan and vanillin in aqueous solutions 
i.e. 0.5% chitosan + 10 mM vanillin, 1% chitosan + 10 mM vanillin, 1.5% chitosan + 10 mM vanillin, 0.5% chitosan 
+ 15 mM vanillin 1% chitosan + 15 mM vanillin and 1.5% chitosan + 15 mM vanillin, respectively, were used as 
edible coating on tomato fruits. The results revealed 1.5% chitosan + 15 mM vanillin have significantly lower the 
activities of defense enzyme i.e. peroxidase (POD) and polyphenoloxidase (PPO), and phenylalanine ammonia-lyase 
(PAL) while shelf life was prolonged to 25 days at 26 ± 2ºC and 60 ± 5% relative humidity without any negative 
effects on fruit postharvest quality. 
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Introduction  
 
Tomato (Lycopersicon esculentum Mill) is one of the most popular and highly consumed vegetables globally 
(Sucharitha et al., 2018). Tomatoes are rich in antioxidants such as lycopene, carotenoid, total phenolic content, 
minerals and vitamins (Safari et al., 2020). These valuable antioxidants could reduce the risk of heart disease, cancer, 
oxidative stress and cardiovascular diseases (Forni et al., 2019; Jing et al., 2019; Liu et al., 2018). 
 
However, being a climacteric fruit, it associated with short postharvest life due to postharvest diseases, accelerated 
ripening and senescence that resulted losses in quantity and quality. Tomato sustained their shelf life in ambient 
storage around 8-12 days (Mwende et al., 2018). The quality maintenance of tomato is very crucial in postharvest 
handling. Commonly, in developing countries, the quality loss was due to insufficient postharvest handling, poor 
transport systems, fluctuating temperatures, relative humidity (RH), gaseous storage and postharvest diseases (Arah 
et al., 2015).  
 
Generally, the fresh fruit could not improve their quality after harvest. Nevertheless, itcan be retained by applying 
effective postharvest management techniques. Researchers indicated that edible coating is one of the alternative 
treatments to prolong postharvest life by preserving fruit quality, yet, it was low in cost (Mahfoudhi et al., 2014). 
Coating treatment acted as a barrier to water loss, physical, chemical, microbiological activity, anti-browning agents, 
and exchange of gases (Safari et al., 2020), lowering the oxidative reaction rate and maintain nutritional quality 
during storage (Kore et al., 2017; Dhumal and Sarkar, 2018; Bal, 2019). Among structural materials of edible 
coatings, chitosan from  polysaccharides-based has the ability to form semi-permeable films on fresh fruits (Nor 
and Ding, 2020). It retard the fruit deterioration and extend the storage life by inhibiting the growth of 
microorganism and modifying the internal atmosphere to reduce respiration and ethylene production rate, thus 
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delay activities in defense enzymes (Jiao et al., 2019; Rahimi et al., 2019). Phenylalanine ammonia-lyase (PAL), 
peroxidase (POD), and polyphenoloxidase (PPO), are among the most important enzymes with defensive responses 
in plants against insects and pathogens (Han et al., 2009). 
 
Vanillin is an organic phenolic aldehyde that has antimicrobial effects against yeasts, molds, and bacteria (Quyen and 
Rachtanapun, 2016;  Rakchoy et al., 2009; Safari et al., 2021). These antimicrobial effects control the decay of fruit  
(Takma and Korel, 2017). In in vitro study, researchers found out vanillin inhibits mycelium growth of Escherichia 
coli in food (Stroescu et al., 2015), Anthracnose in mango fruit ( Jaimun et al., 2019)  and Botrytis cinerea in grapes 
(Sangsuwan, 2019).  
 
In term of defense-enzyme activities, 1% of chitosan significantly suppressed the activities of POD and PAL 
compared to 0.5% of chitosan and control in Sponge gourd stored in darkness at 25±1◦C and 90–95% relative 
humidity (RH) (Han et al., 2014). Wang and Gao (2013) reported that 1% chitosan coating decline POD activity in 
strawberry fruit during 9 days of storage at 10ºC. In other studies, 1% chitosan reduced PPO enzyme activities in 
pomegranate fruit during 12 days storage at 4ºC. To date, the combination effects of chitosan with vanillin on 
defense enzymes activity of tomato stored at room temperature 26 ± 2ºC/60 ± 5% RH is not well-explored. 
Therefore, this study aimed to determine the combined effects of chitosan and vanillin as a coating agent on 
defense enzymes activities during storage at 26 ± 2ºC/60 ± 5% RH of tomato fruit.  
 
Materials and methods 

 

Fruit materials  

 
Pink color tomato (10 to 30% of the surface is yellow to pink according to USDA class 3 color) from Syngenta 
1039 variety were obtained from Weng Seng Vegetable Products Sdn. Bhd., Cameron Highlands, Pahang, Malaysia. 
On the same day of harvesting, tomato was sent to the Laboratory of Postharvest, Department of Crop Science, 
Faculty of Agriculture, and Universiti Putra Malaysia. The fruit was selected for uniform shape, maturity, weight 
(ranged between 90-110 g) and free from any blemishes and damages. 
 
Preparation of coating solutions 

 

Commercial chitosan originated from shrimp-shell crustaceans with 85% deacetylation was purchased from Enviro 
Clean Energy Sdn. Bhd., Perintis Teknologi Pertanian, Malaysia (ECO. www.kitosan.my). Meanwhile, an organic 
compound of 99% pure vanillin with the molecular formula C8H8O3 was bought from Evergreen Engineering & 
Resources Sdn. Bhd., 43500 Semenyih, Selangor, Malaysia. Chitosan solution with concentration of 0.5, 1 and 1.5% 
v/v was prepared and the solution pH was adjusted to 5.6 with 1 M NaOH, and 0.1% Tween 20 was added to 
improve the solution wettability. Distilled water without chitosan containing 0.1% Tween 20 was served as control. 
Vanillin powder with concentration 10 and 15 mM was dissolved in distilled water. A hot plate magnetic stirrer was 
used to heat the solution at 83ºC for 5 min until vanillin powder has melted and dissolved. Then, each vanillin 
solution was mixed with three concentrations solution of chitosan to form 0.5% chitosan + 10 mM vanillin, 1% 
chitosan + 10 mM vanillin, 1.5% chitosan + 10 mM vanillin, 0.5% chitosan + 15 mM vanillin 1% chitosan + 15 
mM vanillin and 1.5% chitosan + 15 mM vanillin, respectively.  
 
Postharvest coating treatments 

 

Tomato was dipped in chlorinated water that prepared from 0.05% sodium hypochlorite for 3 min prior to coating 
treatments (Ali et al., 2010). The fruit was rinsed and air-dried for 1 h and randomly divided into seven lots. All fruit 
were dipped for 1 min in coating solution. For control, the fruit was dipped in distilled water containing 0.1% 
Tween 20. The fruit was then dried for 2 h at 26 ± 2°C/60 ± 5% relative humidity (RH). For each coating, six fruit 
per replicate was used. The fruit was then packed in 18-holes 0.5 cm diameter perforated plastic bag 18 cm x 26 cm 
of 0.05 mm thickness. These bags were placed in commercial corrugated fibreboard cartons of 30 cm x 25 cm x 15 
cm. The fruit was stored at 26 ± 2°C/60 ± 5% RH for 25 days. Each treatment repeated four times and analysis 
was carried out at every 5-day interval. In each replication, six fruit was analysed.   
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Determination defense enzymes activities  

 
Protein content 

 
The extraction and analysis of protein are carried out by using the combined techniques of Safari et al. (2021); 
Jumnongpon et al. (2012); Raseetha et al. (2011) and Bonjoch and Tamayo (2001) with minor modifications. The 
chemicals used to extract and evaluate enzymes were analytical grade. Frozen tomato fruit pulp tissue of 0.5 g was 
immediately ground by using a small ceramic kitchen pestle and mortar (UNITED SCIENTIFIC PPM075 Mortar 
and Pestle, 125 mL, USA) for 30 s on ice and homogenized with 1 mL ice-cold 50 mM phosphate buffer containing 
1 M NaCl (pH7.1). The mixture was centrifuged (Scan Speed 1730R, Scala Scientific, Netherlands) at 16000 x g at 
4°C for 20 min. The supernatant was then kept in an ice-water bath prior to the analysis. 
 
The protein content of protein solutions derived from tomato fruit was measured using the Bradford procedure 
(Bradford, 1976). Bradford reagent was obtained from Bio-Rad Laboratories, Inc., USA. The Bradford reagent was 
prepared by using distilled water in a 1:4 ratio, 40 mL Bradford reagent was mixed in 160 mL distilled water, then 
1.2 mL of Bio-Rad Bradford reagent was added with 120 µL protein supernatant and the mixture was briefly 
vortexed. The mixture was left to incubate for 30 min at room temperature, and the absorbance was read at 595 nm. 
The concentration of the extracted protein solutions from the bovine serum albumin standard curve (R2=97) has 
been quantified. The measurement was repeated three times. A standard curve plotting absorbance with various 
concentrations was obtained using bovine serum albumin (Sigma Chemicals Co., St. Louis, USA) in the 
concentration range 25- 400 µg/mL. The protein content in mg/mL was read against the standard curve and 
calculated by following formula according to Wang et al. (2020): 
Protein content (mg/mL) = protein quality × VT/VS × W 
Where: 
 
Protein quality results are collected in agreement with the standard curve; VT is the total volume of extraction and 
VS is the volume of solution for evaluation while W is the weight of the sample. 
 
Determination of phenylalanine ammonia-lyase (PAL) enzyme activities 

 
The extraction for enzyme phenylalanine ammonia-lyase (PAL) was carried out according to Tamimi et al. (2017) 
and Han et al. (2014) methods with some modifications. 50 mg frozen tissue was ground in 2 mL cold 25 mM 
sodium borate buffer (pH 8.8), containing 2 mM β-mercaptoethanol and 0.5 g polyvinylpyrrolidone. The 
homogenate was centrifuged (Scan Speed 1730R, Scala Scientific, Netherlands) for 20 min at 16000 x g at 4ºC, and 
the supernatant was used as an enzyme source to determine the PAL activity. 
 
PAL activity was determined by the production of cinnamate at 37ºC for 1 h, the absorbance was measured at 290 
nm (Habibi et al., 2019). The assay mixture comprised 1 mL of enzyme extract and 2 mL of 50 mM sodium borate 
buffer (pH 8.8). The reaction started with 1 mL of 20 mM L-phenylalanine added and incubated at 37ºC for 1 h. 
Then, the reaction was stopped by adding 1 mL of 1 M HCl. The blank assay was performed with a mixture 
containing L-phenylalanine at zero incubation times. One unit of PAL activity has been defined as the amount of 
enzyme that produced an absorbance increase of 0.01 at 290 nm per h (Habibi et al., 2019). The specific activity of 
the PAL enzyme was expressed as U/mg protein, where one unit of enzyme activity was defined as the production 
of cinnamic acid and the increase of one unit in absorbance per h. The activity of the enzymes was determined 
using the analytical approximation as defined in the following equation:  
 
Unit enzyme activity (U/mL) = ∆ A 270 nm/min Test- ∆ A 270 nm/min Blank *3* df /19.73*0.1 
The specific activity of the enzymes was expressed in (U/mg protein) as followed: 
 
Specific activity (U/mg protein) = Unit activity (U/mL) / Protein content (mg/mL) (Sigma Prod. No. P-2126) 
 
 
 
 
 
 

file:///G:/IJSAR%20PAPERS/2019%20vol-2%20issue-%20january-february/29......15.02.2019%20manuscript%20id%20IJASR004229/www.ijasr.org


 

 

 

International Journal of Applied Science and Research 

 

180 www.ijasr.org                                                               Copyright © 2021 IJASR All rights reserved   

 

Determination of peroxidase activity 

 
Extraction and assay of peroxidase activity were carried out based on the combined procedure of Zhang et al. 
(2018) and Raseetha et al. (2011) with minor modifications. 0.5 g frozen tomato fruit pulp tissue was immediately 
ground by using a small ceramic kitchen pestle and mortar (UNITED SCIENTIFIC PPM075 Mortar and Pestle, 
125 mL, USA) for 30 s on ice and homogenized with 1 mL ice-cold 50 mM phosphate buffer containing 1 M NaCl 
(pH7.1). The mixture was centrifuged (Scan Speed 1730R, Scala Scientific, Netherlands) for 20 min at 16000 x g at 
4°C. The supernatant was then kept in an ice-water bath prior to the analysis. 
 
The POD activity was determined based on the development of brown coloration in the presence of hydrogen 
peroxide H2O2 arising from the oxidation of guaiacol. A 20 μL sample extract supernatant was well mixed in a clean 
cuvette with 1.7 mL 0.1 M sodium phosphate buffer pH 7.0, and 200 μL of 1 mM guaiacol. Then the POD reaction 
was started by adding 100 μL of 1.5% H2O2 v/v. The rate of absorbance rise at 485 nm was monitored for 3 min at 
20°C. The POD activity was expressed as U/mg  protein by Kokkinakis and Brooks (1979) and Ogola et al. (2009) 
as follows: 
 
Unit activity (U/mL) = (∆ OD /min * V * D) / (26.6 * d* v) 
The specific activity of the enzymes was expressed in (U/mg protein) as followed: 
Specific activity (U/mg protein) = Unit activity (U/mL) / Protein content (mg/mL) 
 
Polyphenol oxidase activity 

 
Polyphenol oxidases (PPO) activity was determined based on changes in the color intensity of catechol oxidation 
products as described in combination methods of Indunil Kumari et al. (2017) and Mishra et al. (2012). The 
extracted POD supernatant was used as the source of the enzyme, which was held at -20°C. Briefly, 200 μL of 0.01 
M catechol was supplemented to start the reaction. The absorbance changes were recorded at 495 nm for 1 min. 
The PPO specific activity was determined by expressing PPO enzyme specific activity (U/mg protein) by the 
following equation: 
 
Unit activity (U/mL) = (∆ OD/min * V * D) / (11.3 * d* v) 
The specific activity of the enzymes was expressed in (U/mg protein) as followed: 
Specific activity (U/mg protein) = Unit activity (U/mL) / Protein content (mg/mL) 
 
Experimental design and statistical analysis   

 
The experiments were carried out in a completely randomized design (CRD) with seven coating treatments and four 
replications (Figure 1). The obtained data were analysed using analysis of variance and mean comparisons were 
performed using Duncan’s multiple range test (DMRT) in the significance level of P≤0.05. All the analyses were 
conducted using a statistical analysis software (SAS) version 9.4 (SAS Institute Inc., Cary, North Carolina, USA). 
Pearson’s correlation analyses were used to correlate defense enzymes among each other. The entire experiments 
were repeated three times and the data were pooled before analysis. However, control fruit was discarded for 
analysis after day 20 due to high disease severity and decay. 
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Figure 1. Schematic diagram showing coating treatments. 
 
Result 

 
Defense-related enzymes (PAL, PPO, and POD) activity 

 
In the present study, there were significant interaction effects between coating treatments and storage days in PAL, 
PPO, and POD activities of tomato fruit (Table 1). 
 
Table 1: Main and interaction effects of different coating treatments and storage days on defense-related 

enzyme activity of tomato fruit stored at 26 ± 2°C 60 ± 5% relative humidity for 25 days 

 

Coating Treatments

Completely 
randomized design 

(CRD)

Control

1.5% chitosan + 
15 mM vanillin

1% chitosan + 
15 mM vanillin

0.5% chitosan + 15 
mM vanillin

1.5% chitosan + 10 
mM vanillin

1% chitosan + 10 
mM vanillin

0.5% chitosan + 
10 mM vanillin

Factor PAL specific activity                  
(U/mg protein) 

PPO specific activity  
(U/mg protein) 

POD specific 
activity  
(U/mg protein) 

Treatment    
Control 0.95 az 1.25 az        1.55 az 
0.5% chitosan +10 mM vanillin 0.92 a 1.17 a 1.51 a 
1% chitosan +10 mM vanillin 0.88 ab 1.10 b 1.48 a 
1.5% chitosan +10 mM vanillin 0.81 b 1.27 a 1.36 b 
0.5% chitosan +15 mM vanillin 0.91 a 1.08 ab 1.44 ab 
1.0% chitosan +15 mM vanillin 0.82 c 0.88 c 1.09 c 
1.5% chitosan +15 mM vanillin 0.74 c 0.77 c 1.03 c 
Storage day    
0 0.59 d 0.69 c 1.16 c 
3 0.69 c 0.72 c 1.10 c 
6 0.76 b 0.87 b 1.29 b 
9 0.85 ab 0.94 ab 1.39 b 
12 0.94 a 1.15 a 1.54 a 
15 1.09 a 1.17 a 1.45 a 
Interaction 
Treatment* Storage day 

 
             ** 

 
   ** 

 
      ** 
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zMeans values in a column followed by different letters indicate significantly different according to Duncan’s 
multiple range test at P < 0.05. **Highly significant at P ≤0.01. (n=24) 
 
Figure 2 displays that there were no significant changes in PAL enzymes activity among treatments at day 0 and day 
5. However, at storage day 10, fruit treated with 0.5% chitosan + 10 mM vanillin 1% chitosan + 10 mM vanillin, 1% 
chitosan + 15 mM vanillin and 1.5% chitosan + 15 mM vanillin shows lower PAL activity but not different with 
fruit control and those coated with 0.5% chitosan + 15 mM vanillin and 1.5% chitosan + 15 mM vanillin. By 
storage day 15 fruit coated with 1% chitosan + 15 mM vanillin and 1.5% chitosan + 15 mM vanillin had lower PAL 
activity than than control fruit and those coated with 0.5% chitosan + 10 mM vanillin, 1% chitosan + 10 mM 
vanillin, 1.5% chitosan + 10 mM vanillin and 0.5% chitosan + 15 mM vanillin. This trend continued up until the 
end of storage day 25 where starting from storage day 10, the PAL activity has increased gradually to the maximum 
level.  
 

 
 
Figure 2: Effects of coating treatment on PAL specific activity in tomato fruit stored for 25 days at 26 ± 
2°C and 60 ± 5% relative humidity. Means value in a column followed by different letters in each storage 
days differed significantly by DMRT at P ≤ 0.05. Vertical bars indicate standard error of means for four 
replicates. (n=24) 
 
Figure 3 displays no significant PPO enzyme activity changes among all treated fruit at day 0 up to day 15. 
However, at storage day 20, the activity of the enzyme was lower in fruit treated with 1% chitosan + 15 mM vanillin 
and 1.5% chitosan + 15 mM vanillin than  control fruit and those coated with 0.5% chitosan + 10 mM vanillin, 1% 
chitosan + 10 mM vanillin, 1.5% chitosan + 10 mM vanillin and 0.5% chitosan + 15 mM vanillin.  This trend 
continued until the end of storage day 25.  
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Figure 3: Effects of coating treatment on PPO specific activity in tomato fruit stored for 15 days at 26 ± 
2°C and 60 ± 5% relative humidity. Means value in a column followed by different letters in each storage 
days differed significantly by DMRT at P ≤ 0.05. Vertical bars indicate standard error of means for four 
replicates. (n=24) 
 
Figure 4 exhibits no significant changes in POD enzyme activity among treatments at day 0 and day 5. However, at 
storage day 10, the activity of the enzyme was lower in fruit treated with 1% chitosan + 15 mM vanillin and 1.5% 
chitosan + 15 mM vanillin than  control fruit and those coated with 0.5% chitosan + 10 mM vanillin, 1% chitosan 
+ 10 mM vanillin, 1.5% chitosan + 10 mM vanillin and 0.5% chitosan + 15 mM vanillin.  This trend continued until 
the end of storage day 25.  
 

 
 
Figure 4: Effects of coating treatment on POD specific activity in tomato fruit stored for 15 days at 26 ± 
2°C and 60 ± 5% relative humidity. Means value in a column followed by different letters in each storage 
day differed significantly by DMRT at P≤0.05. Vertical bars indicate standard error of means for four 
replicates. (n=24) 
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There was a significant correlation among defense-related enzymes. Pearson’s correlation analysis shows that there 
was a highly significant positive correlation between PAL and PPO (r = 0.76), an intermediate positive correlation 
between PAL and POD (r=0.71), also a positive correlation between POD and PPO (r = 0.69) (Table 2).  
 
Table 2: Pearson’s correlation coefficients for diseases incidence and severity of Fusarium oxysporum 
inoculated tomato fruit stored at 26± 2 °C 60 ± 5% relative humidity for 15 days 
 

 PAL PPO POD 

PAL -   

PPO 0.76 ** -  

POD 0.71** 0.69** - 

 
PAL = Phenylalanine ammonia-lyase, POD = Peroxidase and PPO = Polyphenoloxidase. ** Significant correlation 

at P ≤0.05 and P ≤0.01. (n=24( 
 
Discussion  
 
Effects of coating on the activity of defense-related enzymes (PAL, PPO, and POD)  
There are many defense enzymes involved in defense reactions against plant pathogens including oxidative enzymes 
such as POD, PPO, and PAL (Lavania et al., 2006). Defense-related enzymes such as PAL, PPO, and POD are 
important biochemical indicators for pathogen resistance in host plants (Han et al., 2009). PAL is a leading enzyme 
in the metabolism of phenols that protect plants against stress conditions (Soleimani et al., 2012). Interestingly, 
there was a significant interaction effect between treatment and storage day on tomato fruit defensive enzyme PAL 
activity (Figure 2). As storage day advanced, PAL activity increased, contrary as the concentration of chitosan and 
vanillin increased, the PAL activity decreased (Table 1). However, at the end of storage day, PAL activity in fruit 
coated with 1% chitosan + 15 mM vanillin and 1.5% chitosan + 15 mM vanillin had 28.82 and 31.85%, respectively. 
It was lower than the fruit coated with 0.5% chitosan + 10 mM vanillin.  Overexpression of PAL activity might be 
due to injury that caused by disease attack, fruit senescence, and ethylene production in control fruit and those 
coated with 0.5% chitosan + 10 mM vanillin. Zhan and Zhu (2011) found a declining trend of PAL activity of water 
caltrop fresh fruit  (Trapa natans L.) coated with 1 and 2% chitosan compared to 0.5% chitosan during 15 days of 
storage at 4 ± 1ºC and 80-85% RH. Previous research also reported tomato fruit  that coated with 1.5% chitosan 
has lower PAL activity than those coated with 0.5% stored at 25ºC (Lu et al., 2019). In the present study, the layer 
created by the higher concentration of coating such 1.5% chitosan + 15 mM vanillin was  probably reduced 
ethylene production rate and slowed down the ripening process of tomato fruit that may lead to low PAL activity in 
this fruit. 
 
PPO is a crucial defense enzyme against pathogen reaction by the oxidation of polyphenols into quinines which 
have antimicrobial activity and also strengthen the resistance of plant cells during the microbial attack (Wang et al., 
2019; Prasannath, 2017). The tomatoes' PPO activity was significantly affected by the interaction between treatment 
and storage day (Figure 3). Table 1 shows that as storage day advanced, PPO activity increased. Conversely, as 
chitosan and vanillin concentration increased, i.e. 1% chitosan + 15 mM vanillin and 1.5% chitosan + 15 mM 
vanillin, the PPO activity was decreased. However,  PPO activity at the end of storage day, fruit coated with 1% 
chitosan + 15 mM vanillin, and 1.5% chitosan + 15 mM vanillin had 29.65 and 33.7% lower PPO activity than fruit 
coated with 0.5% chitosan + 10 mM vanillin, respectively. This reduction and inhibition PPO activity might be due 
to chitosan coatings, which had reduced the exposure of the fruit to oxygen and suppressed enzyme activity by 
wrapping the fruit's surface. In agreement to Minh et al. (2019) study, PPO activity in 1.5% chitosan-coated fresh 
mushroom was lower than those coated with 0.5% chitosan. Ghasemnezhad et al. (2013) demonstrated that PPO 
activity in pomegranate fruit coated with 1% chitosan was lower than those coated with 0.5% chitosan. A similar 
finding reported in litchi fruit (Eissa, 2007a) and tomato fruit (Badawy and Rabea, 2009) during storage. In the 
current study, the film created by the higher concentration of coating 1.5% chitosan + 15 mM vanillin has slowed 
down respiration, ethylene production rate, and senescence process. Thus PPO activity is lower in this fruit. 
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POD is one of the enzymes expressed upon different inducements, including pathogenic challenge and have 
important roles during pathogenesis, oxidative burst, and resistance to infection (Kuvalekar et al., 2011). 
Interestingly, there was also a significant interaction effect between treatment and storage day on tomato fruit 
defensive enzyme, i.e. POD activity (Figure 4). As storage day advance, POD activity increased, and contrariwise as 
the chitosan and vanillin concentration increased, the PAL activity decreased (Figure 4). However, fruit coated with 
1% chitosan + 15 mM vanillin and 1.5% chitosan +15 mM vanillin had 33.62 and 37.3%, respectively lower POD 
activity than fruit coated with 0.5% chitosan + 10 mM vanillin at the end of storage day 25. The inhibitory effects of 
chitosan and vanillin on POD activities may be because the coatings reduced the respiration that restricts the cell 
membrane and structure damaged by pathogen attack and delayed ripening and senesces process. Inline with this 
study, Elsayed et al. (2019) found that fresh green bean coated with 1.5% chitosan had lower POD than those 
coated with 0.5% chitosan stored at 4ºC and 85-90% RH for 28 days. In agreement with this study, previous 
researchers reported that 1.5% chitosan had lower POD in the fruit than those coated with 0.5% chitosan as found 
in tomato fruit (Liu et al., 2007), strawberries (Wang and Gao, 2013) and mushroom (Eissa, 2007). In the current 
study, the film formed by the higher concentration of coating 1.5% chitosan + 15 mM vanillin has reduced disease 
attack, cell structure damaged by the pathogen, also has slowed down respiration rate, ripening, and senescence 
process of tomato fruit, and thus POD activity is lower in this fruit. It is suggested that a higher concentration of 
chitosan and vanillin coating such as 1.5% chitosan + 15 mM vanillin has reduced diseases attack and ripening and 
senescence process. Also has slowed down the rate of respiration and ethylene production of tomato fruit; 
therefore, the activity of the defense-related enzymes i.e. PAL, PPO and POD are lower in this fruit which 
instigated to prolong the tomato fruit shelf life.  
 
There was a significant positive correlation among defense-related enzymes. From the Pearson’s correlation 
analysis, there was a significant positive correlation between PAL, PPO and POD (Table 2). The result was in 
agreement with Adiletta et al. (2018), who found a higher correlation between PPO and POD (r = 0.79) in loquat 
fruit coated with 1% chitosan and stored at 7 ºC for 21 days. In line with this study, Pasquariello et al. (2015) also 
found out a highly positive correlation between PPO and POD (r = 0.87), PPO and PAL (r = 0.71) in strawberry 
fruit coated with 1% chitosan stored at 2 ºC and 95% RH for 14 days. This result indicated that defense-related 
enzymes such as PAL, PPO and POD are the main contributor to oxidation of polyphenols into quinines, which 
strengthen and resistance the plant cells during the microbial attack.   
 
Conclusion  

 
Chitosan combined with vanillin in different concentrations was used as edible coatings to examine its effect on 
tomato defense enzymes during storage at tropical conditions. Results exhibit that higher concentration of chitosan 
and vanillin coatings (1% chitosan + 15 mM vanillin and 1.5% chitosan + 15 mM vanillin) has slowed down the 
defense enzymes activity of tomato. PAL activity was 31.5, the PPO 33.7 activity was and the activity of POD was 
37.3% lower in in tomato by coating1% chitosan + 15 mM vanillin during storage at 26 ± 2°C/60 ± 5% RH for 25 
days.  
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