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Abstract: This work puts out a proactive plan for stopping electricity thefts. A cyber security layer based on a 
unique Monkey-Banana Deceptive Algorithm (MBDA) for intrusion detection is used to reach the prevention 
phase. This algorithm was created by first presenting each stage to scenarios and then formulating a probability 
assignment model. It is based on the well-known 5 or 8-monkey theory. After that, the algorithm for detecting 
intrusion in the SEMs communication gateway is developed using MBDA probability assignment. Selected power 
theft-related indicators are then modelled to strengthen the prevention phase by creating a set of criteria to estimate 
the level of security risk. The MBDA was implemented using a self-generated assault, and the level of prevention is 
determined by the FIS model's output. Based on the conditions of the monitored metrics, the anomaly and 
confirmation models are applied to justify real fraudulent consumers. Implementing this proactive plan will improve 
real-time SEM protection, reduce reliance on energy consumption data analytics, lower false positive rates, do away 
with the practice of bogus financial sanctions, and greatly reduce the need for labour-intensive on-site customer-to-
customer inspections, saving time, money, and stress by 95%. In a smart utility network, this proposed strategy is an 
effective deployment for the detection and prevention of electricity theft. 

Keywords: Prevention, Detection, Smart Grid, Utility, Monkey Banana Deceptive Algorithm, Smart Electricity 
Meter, Cyber-Physical System. 

1. Introduction 
 
One of the basic ways of measuring the socio-economic development and growth of any country like Nigeria is the 
consumption of Electrical Energy, As the growth and development of the nation increases so also does the 
consumption of Electrical Energy. As the demand of electricity increases the need for effective distribution and 
accountability of energy consumption is essential for sustenance of the desired growth of the nation. The dynamics 
of achieving this sustainability is examined using the present power delivering schemes, planning and execution that 
brought about the use of Smart Grid (SG). The Smart Grid helps in effective power delivery by enhancing security 
of the network, resiliency, efficiency, flexibility and control of operations (Borlase, 2016; Clastres, 2011; Farhangi 
2009; Kabalei and Kabalei, 2019). The effective implementation of Smart Grids (SG) depends heavily on energy 
efficiency, with Smart Electricity Meters (SEM) serving as a primary component of the Advanced Metering 
Infrastructure (AMI). Like every other Cyber-Physical System (CPS), it is vulnerable to cyber-attacks, and one 
common goal of these attacks is to steal electricity. However, SEM provides sufficient data that can be used to draw 
conclusions using analysis.  
 
SEM (Smart Electricity Meter) is developed using (AMI) Advanced Metering Infrastructure to provide supporting 
communication and control for effective energy management is a major aspect of the Smart Grid (SG) ( Abushnaf 
et al, 2016; Mclaughlin et al, 2009). SG allows the flexibility of power consumption, pricing and control by using 
smart electricity meter (SEM) at both the customers and the substation, this is to enable easy communication 
between the SEM and utilities. This two way communication allows consumers to better control their energy usage. 
 
2. Methodology 
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As shown in Figure 1, the proactive system for preventing energy theft is addressed with each stage addressing the 
process to achieve the set goals. 

  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Block Diagram 
 
The creation of a simplified AMI divided into zones to facilitate monitoring marks the beginning of the preventative 
phase. A rule-based scenario model using a fuzzy inference system (FIS) based on defined status of chosen 
parameters is presented after intrusion monitoring using a unique detection technique. 
 
2.1.  Simplified AMI Development into Zones 

 
The protection zones are based on variety of parameters, including but not limited to: 
 
1. Customer count in the area under investigation. 
2. Customers' load consumption levels and consumer types. 
3. Intuitive estimation of the customers' integrity (based on previous electricity theft records). 
4. Average reported cases of energy theft. 
5. Easy of identification customers, etc. 
 
Figure 2, shows a specific neighbourhood network that is divided into protection zones (Zone 1, Zone 2, Zone 3, 
and Zone n) that each has n consumers depending on the aforementioned considerations. It is much simpler to 
monitor the data that is been collected from each zone. Monitoring of client consumption data, control measures 
and management of dynamic pricing information, are all made possible through the use of AMI, which links and 
shares this information with the utilities, consumers and third parties. Figure 3 shows the architecture for suggested 
monitoring system in protected area 
 

.  
 
Figure 2: Representation of protective zone for monitored SEMs in an area. 
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Figure 3: Architecture of the proposed monitoring schemes for a set of zones in an area. 
 
2.2. Selection of Indicative Parameters for Electricity Thefts 
 
Key network parameters from all the SEMs are chosen and modelled in each of the zones shown in Figure 2 to 
look for potential intrusions. To efficiently monitor and stop electricity thefts, these factors are simulated based on 
predetermined rules. Here are the chosen parameters (1) Communications Gateway C&C intrusion (2) False or 
aberrant patterns of consumption (3) The data on energy use has a false signature. (4) Untrue pricing (5) Time 
stamps (6) False invoices (or billing errors) (7) Status of the central observer meter 
 
2.3. MBDA Mathematical Formulation 
 
The mathematical formulas as follows to create the algorithm: 
 
1) (Initialization): Set the C&C parameters that could serve as a honeynet for future intruders. Assign probabilities 
to the honeynet elements and take notice that they are currently scripts, just like the bots, but are prevented from 
causing harm to the system and are closely monitored based on the assigned probabilities. 
2) Without any intrusion and assuming C&C parameters are the same in the set, the probability of any of the 

elements of H is set to 
1

𝑛
 . Considering that any combination of the elements of H can carry out an attack, then, the 

intrusion monitoring probabilities of all possible combinations of the elements of H is{
1

𝑛
,

2

𝑛
,

3

𝑛
, … .1} . The primary 

security is designed to block attacks from these elements and store their assigned probabilities as the base for 
detecting new elements. At this instant, there is no suspected intrusion because these probabilities, as assigned to 
the occurrences of the C&C parameters, are seen normal by the IDS since it is the base used to detect anomalies. 
3) If any of the C&C parameters is removed or leaves the network, then, the number of elements in H is reduced to 

𝑛 − 1 such that the intrusion monitoring probability for any of the remaining elements (for all combinations) will 

be {
1

𝑛−1
,

2

𝑛−1
,

3

𝑛−1
, … 1} . Updating the new length, 𝑛 = 𝑛 − 1  then the intrusion monitoring probabilities for all 

possible combinations of the elements simply becomes {
1

𝑛
,

2

〵
,

3

𝑛
, … 1} again although with a different value of 𝑛 . 

4) If a new attack is launched (added to the initial data) to the C&C element, then, is updated and the probability 
detected by the IDS on these new elements are those strange to those of the honeynet set and the database will 
equally be updated to contain these new C&C parameters for subsequent monitoring but with probability of each 
element updated as well. Later, compromised elements are those probabilities not of the newly updated defence 

elements. However, for every addition, the number of honeynet elements is aggregated to a new value of 𝑛 = 𝑛 + 1 

. The honeynet elements are each time assigned {
1

𝑛
,

2

𝑛
,

3

𝑛
, … 1}  for all combinations. 

5) If a number of the first original elements replaces any of the existing element(s) of H, then, the number of 

elements in the honeynet defense set becomes 𝑛 and the assigned probability on the elements remain {
1

𝑛
,

2

𝑛
,

3

𝑛
, … 1}  

for all combinations. 
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6) If a number of second original attack is launched to replace any of the old elements of the C&C, then, the 

number of elements in the defense remains 𝑛 while subsequent monitoring probability also remain  {
1

𝑛
,

2

〱
,

3

𝑛
, … 1} 

for all combinations. This is one advantage of the proposed MBDA as it doesn’t have to learn the behavior of the 
attack to detect them at any time. 

7) If cases v and vi continue in similar fashion, eventually all the 𝑛 attackers would be completely replaced. Assume 

the new set of elements are 𝐻 = {𝑏(𝑖)} but still with 𝑛 elements since they were simply replaced. The monitoring 

probabilities dynamically take the form {
1

𝑛
,

2

𝑛
,

3

𝑛
, … 1}  for all combinations. 

8) In all cases, intrusions are found to be of those elements whose probabilities are below the set threshold from the 
set of combinational probabilities. 
 
2.4. Developed MBDA Algorithm 
 
The mathematical formulations given in section 2.3 are transformed to the proposed MBDA Algorithm as given 
thus: 
 

Step 1).  (Initialization): Let the number honeynet set, H be 𝑛 and 𝐻 = {𝑎(𝑖)} for 𝑖 = 1,2,3, . . 𝑛 where 𝑖 ∈ 𝛧+, 

then, the probability assigned to any of the individual element,𝑃[𝑎(𝑖)] =
1

𝑛
;

2

𝑛
 ;  for any two combinations and so 

on. Let 𝑃1, 𝑃2 … . . 𝑃𝑛 represent the probabilities for all possible combinations of elements in H, and contained in a 

set 𝐶 , then,𝐶 = {𝑃1, 𝑃2 … . . 𝑃𝑛 } . Then, set the lowest value in 𝐶 to be the threshold, 𝑃0 . 
 

Step 1 Step 2).  For all possible combinations of the assigned probabilities,  𝐶 = {𝑃1, 𝑃2 … . . 𝑃𝑛 }. to the 

existing honeynet set, set threshold probability, 𝑃0 and then assign probability to every newly found 

element. Note that if 𝑃0 is 
1

𝑛
 , assigned probability to every other element is 

1

𝑛+1
, 

1

𝑛+2
, 

1

𝑛+3
 etc. Check for 

the presence of intrusion after every set period based on scenarios iii, iv, v and vi of the mathematical 

formulations as contained in Section 3.4.3.2. If one of the elements of 𝐻 is removed, then =
{𝑎(1), 𝑎(2), 𝑎(3) … 𝑎(𝑛 − 1)} and 𝑛 is then updated to 𝑛 = 𝑛 − 1, then, Step 6. 

Step 2 If any new element, say, 𝑏(𝑗) is added to 𝐻, then, 𝐻 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑚}. For all 𝑎(𝑖), 

𝑏(𝑗) ∈ 𝐻, for 𝑖 = 1, 2, … , 𝑛 and 𝑗 = 1,2, … , 𝑚 where  𝑖, 𝑗 ∈ ℤ+, then 𝑛 = 𝑛 + 𝑛(𝑏(𝑗)) and 𝐻 is 

updated to {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛}, then, Step 6. 

Step 3 If a second original attack, say 𝑑(𝑗), is launched, then, for all 𝑎(𝑖), d(j) ∈ 𝐻, then for 𝑖 = 1, 2, … , 𝑛 and 

𝑗 = 1,2, … , 𝑚 where  𝑖, 𝑗 ∈ ℤ+ then 𝑛 = 𝑛 + 𝑛(𝑞(𝑖)), and 𝐻 is equally updated to {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛}, 
then, Step 6. 

Step 4 For all elements of 𝐻, determine 𝑝(𝑎(𝑖)) and If P(𝑎(𝑖)) ∈ C, output “No Intrusion detected” Else 

return “Intrusion detected” and return 𝑎(𝑖) as intrusion and activate the base security to block the threat, 

then update 𝐻 to include 𝑎(𝑖). 

Step 5 For all scenarios, Check if n(𝐻) ≥ 𝑁, if Yes, shift n(𝐻) by removing the old 
𝑛

2
 elements and update 𝑛 =

𝑛 − (
𝑛

2
). Then, calculate new values for P(𝑎(𝑖)). 

 
Figure 4: MBDA Operation Spot 
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The location of MBDA’s activity at the communication gateway is shown in figure 4. This indicates that security is 
offered before information is shared. The capacity of the proposed MBDA to consistently detect approaching 
intrusion by assigning intelligent calculated threshold probabilities based on predetermined scenarios set it apart 
from conventional honeynets and other anomaly detection techniques. This probability distribution is uniformly 
distributed across all conceivable scenarios and depends on the number of traps (honeynet) elements. 
 

 
Figure 5: Intrusion detection scheme by probability assignment of MBDA 
 
2.5. Application of MBDA in AMI for Intrusion Detection 

 
The majority of attacks on AMI in relation to SEM are trying to steal energy through fake signatures or data 
manipulation. The following are some ways that the proposed MBDA aids in providing real-time SEM intrusion 
monitoring: 
 

Step 1 (Initialization): Set potential number of honeynets, 𝐻 = {𝑎(𝑖)} to 𝑛 and set the number of time steps, 
counter t = 0. 

Step 2 For each of the monitored SEM, assign probabilities 𝑃1, 𝑃2 … 𝑃𝑛 for all possible combinations and set a 

threshold, 𝑃0. 
Step 3 Assign probabilities to all found C&C within a given timestep. 

Step 4 At every set time steps, 𝑡, and for each of the SEM, Check if 𝑃𝑖 < 𝑃0 based on defined probability 
assignment. Return “Intrusion Detected” if True and “No Intrusion Detected” if False. 

Step 5 Report all Smart meters at every time step using the state “1” for intrusion and “0” for no intrusion, 
report the result to Scenario-based Honeynet Model for further analysis and inferences. 
 

2.6. Modelling the Measured Variables 
 

The architecture's monitored parameters are the scheme's observer meter status, δ, timestamps error, β, real-time 
pricing error, γ, and intrusion detection status, α. Each compromised state in this model is assigned to 1 and the 
uncompromised state is set to 0. The state of the monitored parameters is first evaluated at a timestep, τ, T as 

described in Equation (1), where 𝑇𝜏 is the timestamp at the current evaluation timestep, 𝑇𝜏−1 the timestamp 

immediately preceding timestamp of evaluation and 𝑠𝑑, the variance of the two timestamps. At every timestep 𝑇𝑑  
must be constant. 
 
As a result, errors are indicated when these variables change, and Equation (2) is used to determine the timestamp 
inaccuracy β 
 

𝑇𝜏 − 𝑇𝜏−1 = 𝑇𝑑                                         1 

𝛽 = {1,          𝑇≠𝑇𝑑

0,        𝑇=𝑇𝑑                                                                                                                                         2 
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P1,1 ………. Pn,τ is the real-time price that is given to the neighbourhood at timesteps, 1, 2, 3 to 𝜏 for customers 1, 

2, 3 to 𝑛. Real-time pricing for each of the SEM is verified using Equations (3) through (5), as was previously 
discussed. Equation (3), is created to ensure constant monitoring of the pricing structure among customers in a 
zone at any given timestep under the premise that all customers in the Zones are subject to equal per-kWh charging. 

Equation (4) compares a customer’s pricing regime with the utility’s rates offered at any τ where 𝑃𝑈,𝜏 indicates the 

utility’s established billing schedule at timestep τ. Equation (5), is developed to define the state for both 
compromised and uncompromised.  
 
∑ 𝑃1,𝜏𝜏 = ∑ 𝑃2,𝜏𝜏 = ∑ 𝑃3,𝜏𝜏 = ⋯ ∑ 𝑃𝑛,𝜏𝜏                              3 

∑ 𝑃ᄌ,𝜏𝜏 = ∑ 𝑃𝑢,𝜏𝜏                     4 

𝛾 = {1,    𝑃𝑢,𝜏≠𝑃𝑖,𝜏

0,    𝑃𝑢,𝜏=𝑃𝑛,𝜏                   5 

 

In order to identify potential compromise in each zone, energy recorded by the observer meter 𝐸𝑜𝑏 , and the energy 

recorded by all SEM 𝐸𝑆𝐸𝑀, in the given zone are both monitored at every given timestep. Modelled states of the 
observer meter, δ, either compromised or uncompromised, are based on values k from Equation (6), where k is the 
maximum amount of stray or unexplained losses in a zone allowable.  
 

𝛿 = {1,    𝐸𝑜𝑏−∑ 𝐸𝑆𝐸𝑀>𝑘
0,     𝐸𝑜𝑏−∑ 𝐸𝑆𝐸𝑀≤𝑘

   

                                                6 
2.7. Establishing Security Risks 
 
A low security risk is defined as one monitored parameter becoming compromised, a medium risk as two monitored 
parameters becoming compromised and a high security risk as all three monitored parameters becoming hacked at 
once for α, β, and γ while a typical or normal security risk is characterized as one where none of the parameter is 
allegedly compromised. 
 
Table 1: Truth table for set rules 
 

Scenario Monitored Parameters Security risk level 

 Α 𝜷 𝛾 

1 0 0 0 Normal 

2 0 0 1 Low 

3 0 1 0 Low 

4 0 1 1 Medium 

5 1 0 0 Low 

6 1 0 1 Medium 

7 1 1 0 Medium 

8 1 1 1 High 

 
Because any imbalance in the measurements of all the monitored SEM within the zone signals a serious concern, 
the observer meter gets priority over other monitored parameters. Table 1 is updated using equation (6) to Table 2 
with δ and the state of the other parameters remaining unchanged when at state “0” other rules are as captured in 
Table 2. 
 
Table 2: Scenario based state parameters for security risk level 
 

Scenario Monitored Parameters  Security Risk Level 

 𝛼 𝜷 𝛾 𝜎 
1 0 0 0 0 Normal 

2 0 0 0 1 Low 

3 0 0 1 0 Low 

4 0 0 1 1 High 
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5 0 1 0 0 Low 

6 0 1 0 1 High 

7 0 1 1 0 Medium 

8 0 1 1 1 High 

9 1 0 0 0 Low 

10 1 0 0 1 High 

11 1 0 1 0 Medium 

12 1 0 1 1 High 

13 1 1 0 0 Medium 

14 1 1 0 1 High 

15 1 1 1 0 High 

16 1 1 1 1 Very High 

 
 

 
 
Figure 6: Implementation of electricity theft prevention model. 
 
2.8. Fuzzy Inference System Design for the Preventative Stage 
 
Using the parameters provided in Table 2 as the basis, a rule-based technique utilizing a fuzzy inference system 
(FIS) is constructed with the aid of MATLAB to execute the intended monitoring and prevention of electricity 
theft. Table 2 is used to describe the membership function of the input and output parameters as well as the rules. 
The input and output structure created using the well-known Mamdani model is shown in Figure 7. The 
membership functions are triangular and trapezoidal, respectively, for the inputs "Low" and "High," The fuzzy set 
created for the input and output is displayed in Table 3. Input and output membership functions of the model are 
depicted in Figures 8 and 9, respectively. 
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Figure 7: input-output layout of the developed model 
 
Table 3: Defined fuzzy sets for the input and output membership functions 
 

 Defined Signal Level Membership Function Fuzzy Sets 

Input Low Triangular [0 0.3 0.5] 

High Trapezoidal [0.3 0.5 0.7 1] 

Output Normal Trapezoidal [0 0.05 0.1 0.2] 

Low Trapezoidal [0.1 0.2 0.3 0.4] 

Medium Trapezoidal [0.3 0.4 0.5 0.6] 

High Trapezoidal [0.5 0.6 0.7 0.8] 

Very High Trapezoidal [0.7 0.8 0.9 1] 

 
 

 
 
Figure 8: Input membership function of the developed model for the prevention phase 
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Figure 9: Output membership functions of the developed model for the prevention phase. 
 
3. Application and Implementation of MBDA 
 
The honeynet set is constructed using a bank of random code generators, and self-attacks are also launched using 
them. The initial honeynet element count, with a maximum of 10 such that each additional entry causes the oldest 
record in the honeynet set to be deleted. Then, using Python script, MBDA probability assignment was used to 
track and report all the self-attacks. 
 
Tables 6 and 7 display the outcomes of two simulations, each with 40 timesteps, and provide information about the 

timesteps, honeynet element P0,  threshold probability, and 𝑃𝑟(𝐴),   assigned probability for the intrusive data. For 
the sake of this demonstration, each timestep is set at 5 s, Table 6 shows the outcome of a single attack. The results 
of utilizing the script to generate multiple attacks at each represented timestep, applying MBDA to set threshold at 
each, and locating such intrusion by given probabilities Pr(A) are shown in Table 7.  
 
Table 6: Implementation of MBDA using a self-Generated script for single attack 
 

𝝉 𝒏 𝑷𝟎 𝐏 𝐫(𝑨) 

Intrusion 
detected 

 

𝝉 𝝉 𝑷(𝒐) 𝐏 𝐫(𝑨) 

Intrusion 
detected? 

0 3 0.3333 0.000 FALSE  20 10 0.1000 0.0000 FALSE 

1 3 0.3333 0.2500 TRUE  21 10 0.1000 0.0000 FALSE 

2 4 0.25 0.2000 TRUE  22 10 0.1000 0.0000 FALSE 

3 5 0.2000 0.000 FALSE  23 10 0.1000 0.0909 TRUE 

4 5 0.2000 0.1667 TRUE  24 10 0.1000 0.0000 FALSE 

5 6 0.1667 0.1429 TRUE  25 10 0.1000 0.0909 TRUE 

6 7 0.1429 0.0000 FALSE  26 10 0.1000 0.0000 FALSE 

7 7 0.1429 0.0000 FALSE  27 10 0.1000 0.0000 FALSE 

8 7 0.1429 0.0000 FALSE  28 10 0.1000 0.0000 FALSE 

9 7 0.1429 0.0000 FALSE  29 10 0.1000 0.0000 FALSE 

10 7 0.1429 0.1250 TRUE  30 10 0.1000 0.0909 TRUE 

11 8 0.1250 0.0000 FALSE  31 10 0.1000 0.0000 FALSE 

12 8 0.1250 0.1111 TRUE  32 10 0.1000 0.0000 FALSE 

13 9 0.1111 0.0000 FALSE  33 10 0.1000 0.0000 FALSE 

14 9 0.1111 0.0000 FALSE  34 10 0.1000 0.0000 FALSE 
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15 9 0.1111 0.0000 FALSE  35 10 0.1000 0.0000 FALSE 

16 9 0.1111 0.0000 FALSE  36 10 0.1000 0.0000 FALSE 

17 9 0.1111 0.1000 TRUE  37 10 0.1000 0.0000 FALSE 

18 10 N/A 0.0000 FALSE  38 10 0.1000 0.0000 FALSE 

19 10 0.1000 0.1000 TRUE  39 10 0.1000 0.0000 FALSE 

 
Table 7: Implementation of MBDA using a Self-Generated script for Multiple attacks 
 

𝝉 𝒏 𝑷𝟎 𝐏 𝐫(𝑨) 

Intrusion 
detected? 

 

𝝉 𝒏 𝑷𝟎 𝐏 𝐫(𝑨) 

Intrusion 
detected? 

0 3 0.3333 0.0000 FALSE  20 10 0.1000 0.0000 FALSE 

1 3 0.3333 0.2500 TRUE  21 10 0.1000 0.0000 FALSE 

2 4 0.2500 0.0000 FALSE  22 10 0.1000 0.0000 FALSE 

3 4 0.2500 0.0000 FALSE  23 10 0.1000 0.0000 FALSE 

4 4 0.2500 0.0000 FALSE  24 10 0.1000 0.0000 FALSE 

5 4 0.2500 0.0000 FALSE  25 10 0.1000 0.0000 FALSE 

6 4 0.2500 
0.2000, 
0.1667 

TRUE  26 10 0.1000 0.0000 FALSE 

7 6 0.1667 0.0000 FALSE  27 10 0.1000 

0.0909, 
0.0833, 
0.0769, 
0.0714 

TRUE 

8 6 0.1667 0.0000 FALSE  28 10 0.1000 0.0000 FALSE 

9 6 0.1667 0.0000 FALSE  29 10 0.1000 0.0000 FALSE 

𝝉 𝒏 𝑷𝟎 𝐏 𝐫(𝑨) 

Intrusion 
detected? 

 

𝝉 𝒏 𝑷𝟎 𝐏 𝐫(𝑨) 

Intrusion 
detected? 

10 6 0.1667 0.0000 FALSE  30 10 0.1000 0.0000 FALSE 

11 6 0.1667 
 
 
0.0000 

 
 
FALSE 

 31 10 0.1000 

0.0909, 
0.0833, 
0.0769, 
0.0714, 
0.0667, 
0.0625 

TRUE 

12 6 0.1667 0.0000 FALSE  32 10 0.1000 0.0000 FALSE 

13 6 0.1667 

0.1429, 
0.1250, 
0.1111, 
0.1000 

TRUE  33 10 0.1000 
 
0.0000 

FALSE 

14 10 0.10000 0.0000 FALSE  34 10 0.1000 0.0000 FALSE 

15 10 0.10000 0.0000 FALSE  35 10 0.1000 0.0000 FALSE 

16 10 0.10000 0.0000 FALSE  36 10 0.1000 0.0000 FALSE 

17 10 0.10000 0.0000 FALSE  37 10 0.1000 0.0000 FALSE 

18 10 0.1000 
0.0909, 
0.0833 

TRUE  38 10 0.1000 0.0000 FALSE 

19 10 0.1000 0.0000 FALSE  39 10 0.1000 0.0000 FALSE 

 
4. Results Of Rule-Based Model Implementation For The Prevention Phase 
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The security risk model's outcome, with 0.5 weights assigned to each of the modelled factors, is shown in Figure 10 
and is based on the defined states and the FIS-designed model. 
 

 
 
Figure 10: Rules implementation of FIS-based prevention model 
 
According to the set rules of which are an exact translation of the scenario-based state parameters used in defining 
the security risk level as found in Table 2, the selected individual monitored parameter with interdependencies on at 
least one other parameter with respect to the security level determines the outcome of Figure 10. Threat is high but 
cover densely in both dimensions where observer meter reading error is large, as seen in Figures 11 to 13, and this 
pattern is repeated in Figures 14 to 16. 
 

 
 
Figure 11: Model dependency of the intrusion α and timestamp β attacks on the security level 
 

 
 
Figure 12: Prevention model dependency of the real time pricing and intrusion attacks on the security risk 
level 
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Figure 13:  Prevention model dependency of the real time pricing (𝜸) and timestamp (𝜷) attacks on the 
security risk level 
 

 
 

Figure 14:  Prevention model dependency of the observer meter reading status (𝜹) and intrusion (𝜶) 
attacks on the security risk level 
 

 
 

Figure 15:  The prevention model dependency of the observer meter reading status (𝜹) and real time 

pricing (𝜸) attacks on the security risk levels. 
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Figure 16:  The Prevention model dependency of the observer meter reading status (𝜹) and timestamp (𝜷) 
attacks on the security risk level 
 
Based on the outcomes of the FIS model as configured in Figure 6, Table 7 is put into practice. Despite this, 
attackers are continually looking for ways to break security, necessitating the necessity for provisions for detection 
in the event of a successful breach. The energy consumption data in kWh, which is the most crucial data in this 
situation, is thoroughly modelled while presuming that other characteristics have been taken into account in the 
preventative phase. 
 
5. Recommendation and Conclusion 
 
These are the contributions of this study: 
 

i. To track the AMI communication gateways, a unique intrusion detection approach called MBDA is 
being developed. Through real-time reporting of intrusions, this contributes to adding another layer of 
protection. 

ii. By suggesting a more straightforward AMI monitoring and protection method, the current phony 
monitoring scheme that invariably results in convoluted and uncoordinated attempts is eliminated. The 
identification of electricity theft is made simpler if the given clients are divided into zones, as is done in 
this research. This aids in getting rid of the existing false monitoring technique, which always leads to 
complicated and disorganized utility activities. 

iii. The over-reliance on the use of energy consumption data is reduced by the presentation of the real-
time monitoring of consumers for prompt prevention of electricity thefts by the FIS model. Since 
analysis and monitoring are independent of other consumers in the zone, the availability of customer-
dependent models facilitates the monitoring of other network characteristics as appropriate for all 
consumer types. Additionally, severe errors caused by the practice of creating a common threshold are 
also eliminated. 

 
Worldwide, electricity theft causes enormous costs and has sparked extensive research into finding remedies, 
particularly in relation to traditional metering. The greater use of SEM within the SUN via AMI has enhanced 
security, but it has also raised concerns about electricity theft, necessitating coordinated efforts to find a clever 
countermeasure to this threat. Unfortunately, the SUN's weakness poses a serious threat to its implementation 
because it may be easily used to commit crimes like stealing electricity. Despite the difficulties involved and without 
a doubt unsuitable for a SUN, on-site confirmation is used to confirm dishonest consumers with dubious profiles. 
Therefore, this work offers a proactive method of reducing electricity thefts in a SUN by rule based preventive 
measures. 
 
A fresh intrusion detection algorithm is implemented in the preventive phase to assist in adding an extra layer of 
security to the networks' base IPS. The n-monkey theory, which was developed into scenarios and mapped as the 
statistical probability assignment method known as MBDA, is used in this algorithm. It was used to detect 
intrusions at the control and command gateways by applying a predetermined threshold and dynamically assigning 

http://www.ijasr.org/


 

 

 

International Journal of Applied Science and Research 

 

 

38 www.ijasr.org                                                              Copyright © 2024 IJASR All rights reserved   

 

probability to a group of honeynet elements. Another layer of security is also provided by the work, which models 
the observer meter status, time stamps, and real-time pricing errors in a segmented zone of a neighbourhood 
network as indicators of electricity thefts. FIS, a rule-based technique, was used to establish security risks and 
monitor these parameters in order to find and stop any potential theft. 
 
Therefore, this system offers new, proactive, and more thorough ways to detect electricity thefts in a SUN. 
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