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Abstract: Principal component analysis (PCA) is widely used in data processing and dimensionality reduction. Its 
online version is useful in many modern applications where the data are large or constantly updated. We introduce 
an online PCA (OPCA) method based on perturbation matrix updating. The OPCA method based on the 
perturbation method utilizes the interlaced property of the eigenvalues of the covariance matrix under the rank-1 
correction to recursively update and sort the eigenvalues, eigenvectors. Numerical example shows that the OPCA 
method reduces the computational complexity and can detect faults in time when faults exist. 
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1 Introduction  

Principal component analysis (PCA) is one of the most common methods to reduce dimension, which is simple and 
feasible. However, in the modern big data environment, the speed of data updating is rapidly, and the demand for 
time and space is also greatly increased. The continuous updating of data requires the continuous updating of 
output results. The PCA method has not the ability of time-varying tracking, so we need to consider the online 
form of PCA-Online PCA (OPCA). Li, et al. (2018) proposed the OPCA based on random approximation. 
However, these algorithms have slow convergence speed and their performance largely depend on selection of step 
size. 

Many scholars use recursive PCA to monitor data in real time, see also Elshenawy et al. (2010), Chenet al. (2011) 
and Mitz et al. (2019). Li et al. (2000) proved the convergence and convergence rate of the recursive algorithm. This 
paper introduces an OPCA based on perturbation method; see also Hegde et al. (2006). In perturbation method, 
PCA updating is reduced to finding the root of rational function by using the staggered property of the eigenvalues 
of a covariance matrix under rank-1 correction. Interestingly, this recursive method is accurate and produces the 
same results as offline PCA. Since the perturbation method is updated based on the matrix with rank-1, the 
computational complexity is significantly reduced and the storage is greatly saved. 

The paper is organized as follows. In Section 2, we describe the perturbation method. The experiment analysis 
resultsillustrate the advantages of our approach for real data set in Section 3 while conclusions are presented in 
Section 4. 

2 Perturbation method 

 

Let 𝐱𝑖 be p-dimensional random vectors, have mean vector �̅�𝑑 = ∑ 𝐱𝑖/𝑑
𝑑
𝑖=1 and sample covariance matrix 𝑆𝑑 =

𝑈𝑑Λ𝑑𝑈𝑑
𝑇,where 𝑈𝑑 = (𝒖1, 𝒖2, ⋯ , 𝒖𝑝) andΛ𝑑 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, ⋯ , 𝜆𝑝). 

When the new sample 𝐱𝑑+1 comes, the updated mean vector and sample covariance matrix arewritten as 
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 �̅�𝑑+1 =
1

𝑑+1
(𝑑�̅�𝑑 + 𝐱𝑑+1), (2.1) 

 𝑆𝑑 =
𝑑

𝑑+1
𝑆𝑑 +

1

𝑑+1
(𝐱𝑑+1 − �̅�𝑑+1)(𝐱𝑑+1 − �̅�𝑑+1)

𝑇. (2.2) 

By using 𝑈𝑑,Λ𝑑,𝑈𝑑+1and Λ𝑑+1, equation (2.2)can be rewritten as 

 𝑈𝑑+1((𝑑 + 1)Λ𝑑+1)𝑈𝑑+1
𝑇 = 𝑑𝑈𝑑Λ𝑑𝑈𝑑

𝑇 + (𝐱𝑑+1 − �̅�𝑑+1)(𝐱𝑑+1 − �̅�𝑑+1)
𝑇. (2.3) 

Define 𝑄𝑑+1 = 𝑈𝑑
𝑇(𝐱𝑑+1 − �̅�𝑑+1) as a rank-1 matrix, and substitute equation (2.3) to be expressed as 

 𝑈𝑑+1((𝑑 + 1)Λ𝑑+1)𝑈𝑑+1
𝑇 = 𝑈𝑑[𝑑Λ𝑑 + 𝑄𝑑+1𝑄𝑑+1

𝑇 ]𝑈𝑑
𝑇. (2.4) 

We decompose matrix𝑑Λ𝑑 +𝑄𝑑+1𝑄𝑑+1
𝑇 into𝑉𝑑+1𝐷𝑑+1𝑉𝑑+1

𝑇 , where 𝑉𝑑+1is a orthogonal eigenvector matrix 

and𝐷𝑑+1 is diagonal matrix, andequation (2.4) becomes 

 𝑈𝑑+1((𝑑 + 1)Λ𝑑+1)𝑈𝑑+1
𝑇 = 𝑈𝑑𝑉𝑑+1𝐷𝑑+1𝑉𝑑+1

𝑇 𝑈𝑑
𝑇. (2.5) 

It is obvious to get the recursive update form of the eigenvector matrix and the diagonal matrix as 

 𝑈𝑑+1 = 𝑈𝑑𝑉𝑑+1,Λ𝑑+1 = 𝐷𝑑+1/(𝑑 + 1). (2.6) 

Consider perturbation analysis of matrix 𝑑Λ𝑑 + 𝑄𝑑+1𝑄𝑑+1
𝑇 . When 𝑑 is large, 𝑑Λ𝑑 +𝑄𝑑+1𝑄𝑑+1

𝑇 approximates a 

diagonal matrix; that is, 𝐷𝑑+1will be close to 𝑑Λ𝑑, and 𝑉𝑑+1will be close to identity matrix𝐼.Therefore, 𝑄𝑑+1𝑄𝑑+1
𝑇  

(𝑄𝑑+1 is the rank-1 matrix) is regarded as perturbation term of diagonal matrix 𝑑Λ𝑑.Using the 

approximations:𝐷𝑑+1 = 𝑑Λ𝑑 + 𝑃Λ and 𝑉𝑑+1 = 𝐼 + 𝑃𝑉, where 𝑃Λ and 𝑃𝑉 arecorresponding perturbation 

matrices.The matrix 𝑉𝑑+1𝐷𝑑+1𝑉𝑑+1
𝑇  can be expressed as 

𝑉𝑑+1𝐷𝑑+1𝑉𝑑+1
𝑇 = (𝐼 + 𝑃𝑉)(𝑑Λ𝑑 + 𝑃Λ)(𝐼 + 𝑃𝑉)

𝑇 

=𝑑Λ𝑑 + 𝑃Λ +𝐷𝑑+1𝑃𝑉
𝑇 + 𝑃𝑉𝐷𝑑+1 + 𝑑𝑃𝑉Λ𝑑𝑃𝑉

𝑇 + 𝑃𝑉𝑃Λ𝑃𝑉
𝑇. 

If 𝑑𝑃𝑉Λ𝑑𝑃𝑉
𝑇 and 𝑃𝑉𝑃Λ𝑃𝑉

𝑇can be ignored, the matrix 𝑄𝑑+1𝑄𝑑+1
𝑇  is expressed as 

 𝑄𝑑+1𝑄𝑑+1
𝑇 = 𝑃Λ +𝐷𝑑+1𝑃𝑉

𝑇 + 𝑃𝑉𝐷𝑑+1. (2.7) 

Because𝑉𝑑+1 is orthonormal, which satisfies 𝑉𝑑+1𝑉𝑑+1
𝑇 = 𝐼. Supposing𝑃𝑉𝑃𝑉

𝑇 ≈ 0, we get𝑃𝑉 = −𝑃𝑉
𝑇.Since𝑃Λ 

and𝐷𝑑+1 are diagonal matrices, thesolution for perturbation matrices are as follows 

 𝑃Λ(𝑖, 𝑖) = 𝑞𝑖
2, 

 
𝑃𝑉(𝑖, 𝑗) =

𝑞𝑖𝑞𝑗

𝜆𝑗+𝑞𝑗
2−𝜆𝑖−𝑞𝑖

2 , 𝑖 ≠ 𝑗

𝑃𝑉(𝑖, 𝑖) = 0
}, (2.8) 

where𝑞𝑖 is the 𝑖-th element of 𝑄𝑑+1,𝜆𝑖 and 𝜆𝑗 are the diagonal elements of the eigen diagonal matrix 𝑑Λ𝑑.These 

perturbation matrices 𝑃Λ and 𝑃𝑉 can be calculated. Therefore, 𝑉𝑑+1 and 𝐷𝑑+1 can be obtained from 𝐷𝑑+1 =
𝑑Λ𝑑 + 𝑃Λ and 𝑉𝑑+1 = 𝐼 + 𝑃𝑉 . According to equation (2.6), 𝑈𝑑+1 and Λ𝑑+1 have been updated. 

Generally, we assign the same weighting coefficient to all samples, called 𝛽𝑑+1 = 1/(𝑑 + 1) as forgetting 

factor, where 𝛽𝑑+1 ∈ (0,1). The corresponding covariance matrix is expressed as 

 𝑆𝑑 = (1 − 𝛽𝑑+1)𝑆𝑑 + 𝛽𝑑+1(𝐱𝑑+1 − �̅�𝑑+1)(𝐱𝑑+1 − �̅�𝑑+1)
𝑇 . (2.9) 
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According to the above derivation process, we have 𝐷𝑑+1 = (1 − 𝛽𝑑+1)Λ𝑑 + 𝛽𝑑+1𝑃Λ and 𝑉𝑑+1 = 𝐼 + 𝑃𝑉 . The 

elements of matrix 𝑃Λ remain unchanged, and the elements of 𝑃𝑉 arerewritten as 

 
𝑃𝑉(𝑖, 𝑗) =

𝛽𝑑+1𝑞𝑖𝑞𝑗

𝜆𝑗+𝛽𝑑+1𝑞𝑗
2−𝜆𝑖−𝛽𝑑+1𝑞𝑖

2 , 𝑖 ≠ 𝑗

𝑃𝑉(𝑖, 𝑖) = 0
}. (2.10) 

In this way, we complete the recursive process of sample covariance matrix. 

Determine the number of principal components m according to the cumulativepercent variance (CPV) 𝜂𝑚 =

(∑ 𝜆𝑖
𝑚
𝑖=1 )/(∑ 𝜆𝑖

𝑝
𝑖=1 ). For a real data set, make 𝜂𝑚 ≥ 85%. 

3 Experiment analysis 

3.1 T2-statistic 
 

When updating the 𝑑 + 1 sample, score vector 𝑡 is expressed as𝑡𝑑+1 = (𝐱𝑑+1
𝑇 𝑈𝑑+1

(𝑚)
)𝑇 = (𝑈𝑑+1

(𝑚)
)
𝑇

𝐱𝑑+1,where 

𝑈𝑑+1
(𝑚)

 is the first 𝑚 column of the updated eigenvector matrix.The T2-statistic is as follows 

 𝑇𝑑+1
2 = 𝑡𝑑+1

𝑇 𝐻−1𝑡𝑑+1 = 𝐱𝑑+1
𝑇 𝑈𝑑+1

(𝑚)
Λ𝑑+1
−1 (𝑈𝑑+1

(𝑚))
𝑇

𝐱𝑑+1, (3.1) 

where 𝐻 is the diagonal matrix constituted by the standard deviation of the score vector 𝑡. The control limit of T2-
statistics is expressed as 

 𝑇𝑑+1
2 ~

𝑚[(𝑑+1)2−1]

(𝑑+1)[(𝑑+1)−𝑚]
𝐹(𝑚, 𝑑 + 1 −𝑚). (3.2) 

When the significance level is 0.05, the control limit can be determined. 

3.2 Statistical accuracy 
 

We establish relative error to evaluate estimation accuracy of the method, see also Cardot et. al (2017).Let 𝑊𝑚 =

𝑈𝑈𝑇 bethe orthogonal projector on this eigenspace. Given a matrix �̂� of estimated eigenvectors suchthat �̂�𝑇�̂� =

𝐼𝑚 , we consider the orthogonal projector 𝑊𝑚 = �̂��̂�𝑇and measure the relative error by 

 𝐿(�̂�𝑚) =
‖�̂�𝑚−𝑊𝑚‖𝐹

2

‖𝑊𝑚‖𝐹
2 = 2(1 −

𝑡𝑟[�̂�𝑚𝑊𝑚]

𝑚
), (3.3) 

where‖∙‖𝐹 denotes the Frobenius norm. 

3.3 Numerical application 
 
In this section, we select the wine data set to test the performance of the OPCA method. The wine data set from 

the UCI database includes 13 different substances in three wines and 178 sample data. For the data set, we take 𝑑 =
𝑛/2 as the training sample, and the remaining 1/2 samples for online learning. According to CPV criterion, we 
choose the number of principal components m=6 for experiment. 

Figure 1 shows T2-statistic values at each moment, and the solid red line is the 95% control limit. It can be seen 
from panel (a), there is no over-limitphenomenon in the updating process of wine data set. In order to test the 
ability of the method in monitoring faults, we replace the 120-th sample with outliers.As shown in panel (b), there 
are obvious faults in detection of 120-th sample, indicating that the OPCA method based on the perturbation 
method is very reliable. 
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Figure 1 The change of T2-statistic in wine data set 

We calculate the relative error 𝐿(�̂�𝑚) = 0.003293414, and the running time is 0.667038 seconds. It shows that 

the OPCA method has high accuracy and fast running time. 

4 Conclusions 
 
Compared with the offline PCA method, the OPCA method based on the perturbation matrix updating uses a 
perturbation matrix to update the data set, and adapts to the time-varying characteristics of the data set.The online 
update not only makes full use of the information of each sample, but also saves a lot of storage.The results of 
numerical application show that the method can detect faults in time,improve the online monitoring effect of time-
varying process, and improve the estimation accuracy. 
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