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Abstract: Accurate assessment of the solar resource is an essential step for successful planning, design, and 
operation of solar energy systems. In this study, the potential of three machine learning methods, i.e. Gaussian 
Process(GP), Support Vector Machines Regression (SVR), and Artificial Neural Networks (ANN), was evaluated 
for estimating monthly solar irradiation (H) in Morocco with4 inputs variables (latitude, average temperature(T), 
average relative humidity(RH), and month of the year). Then, the Ordinary Kriging (OK) method was used with 86 
data to generate monthly and annual solar maps of the country at a regional scale. The results revealed that the three 
methods showed close results in terms of prediction accuracy, the values of the coefficient of determination (R²) for 
GP, SVRs, and ANNs are (0.960,0.966, and 0.963)for the testing phase. Also, the GP model was the most stable 
with an increase of 7.1% in the testing root mean squared error (RMSE) compared to 36.7% and 26.6% for the 
SVR and ANN algorithms. Nevertheless, its computational cost is approximately 14 and 24 much higher than the 
computational cost of the SVR and ANN models, respectively. Based on the solar maps, and the subdivision of the 
solar potential in seven classes ranging between poor and superb, the results confirmed that Morocco has a large 
solar resource dominated by excellent (5-5.57kWh/m². day) and outstanding (5.57-6.08 kWh/m². day) classes. The 
outstanding solar resource was found in the southern and southeastern regions of the country. 
 
Keywords: Solar resource, Gaussian Process, Artificial Neural Networks, Support Vector Machines Regression, 
Ordinary Kriging, Outstanding. 

1. Introduction 

Global solar radiation reaching the Earth's surface is critical for a variety of applications, including meteorology, 
hydrology, crop production estimation, atmospheric physics, and, most significantly, the design and use of 
renewable solar energy [1].Solar energy is widely harnessed in different regions around the world due to its 
exceptional nature, which is abundant, environmentally sustainable, and inexhaustible. This helps to increase 
sustainability and mitigate some of the negative environmental problems caused by the excessive use of fossil fuels 
[2]. With abundant solar resources (an average of 5.3kWh/m2) and under annual sunshine durations ranging from 
2700h in the north to approximately 3500h in the south, Morocco has one of the most ambitious energy targets in 
the world [3].This goal is to produce 52% of the country’s electricity in 2030 from renewable sources: 20% of them 
from solar energy [4]. 

A precise assessment of the solar resource is a critical component of any solar project, as it is needed for design, 
power production estimation, and decision-making.[5]. This assessment requires knowledge of the solar radiation 
intensity and its spatial distribution.The most accurate method of acquiring this information is through remote 
measurements taken at a specific location. However, due to the high cost of calibrating and maintaining these 
instruments, solar radiation data are scarce in a large number of meteorological stations worldwide, especially in 
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developing countries such as Morocco[6].For this aim,a vast number of models have been suggested to estimate 
solar radiation such as empirical models, models developed from satellite images, clear sky models, and machine 
learning models [7].Moreover,a precise solar resource assessment can help support the developmentof solar power 
systems in phases of exploration, prospection, site selection, and pre-feasibility evaluation[8]. This assessment is 
done by drawing solar irradiation maps allowing the exploration and the analysis of the variability of the solar 
potentialin a country [5]. 

Machine learning algorithms have been used widely throughout the past decade to estimate solar radiation, with the 
ANN model being the most popular.Şenkal [9] applied ANN technique to estimate global solar radiation using 
measured dataof five stations in Turkey. The ANN technique had betterresults compared to other meteorological 
methods. Rumbayan et al.[10] Successfully estimatedthe monthly solar irradiation in Indonesia by using ANN 
method. The results indicated that the ANN method canbe useful in remote locations for island sites in Indonesia 
which lackground measurement.In another study[11],ANN was applied using 13 inputs to predict the monthly solar 
radiation in 45 locations over Italy.The best results are obtained with 7 inputs(top of atmosphere radiation, day 
length, number of rainy days, rainfall, latitude,time period, and altitude).Wang et al. [12] also investigated three types 
of ANN models, Multilayer Perceptron (MLP), Generalized Regression Neural Network (GRNN), and Radial Basis 
Neural Network (RBNN) for predicting daily solar irradiation at 12 stations in different climatic zones of China. 
The results showed that the ANN models could produce satisfactory solar irradiation estimates at most stations, 
and the MLP and RBF models provided better accuracy than the GRNN model.Kumar et al. [13] compared the 
performance of ANN models to the corresponding regression models for estimating monthly global solar 
irradiation and concluded that the ANN models are better than the regression models. 

Recently, SVR techniques have gained the attention of researchers in the field of solar energy.Chen et 
al.[14]evaluated seven SVRs modelsusing different inputsat three stations in the  Liaoning province in China. The 
authors found that all the SVRs models outperformedsignificantlythe studied empirical models.Belaid and Mellit 
[15]applied successfully SVRs to estimate daily and monthly global solar horizontal radiation 
inGhardaïa(Algeria).Theproposed SVRs models have the same performances compared with ANNs models and 
other models published in the literature.Inref [16] three machine learning methods were compared (adaptive neuro-
fuzzy inference system (ANFIS), ANN, and SVR) to predict daily horizontal global solar radiation in the 
YucatánPeninsula, México. The SVRapproachperformed better than the ANN and ANFIS technique.Olatomiwa et 
al.[17]investigated the potential of the SVR techniquefor global solar radiation modeling in a semi-arid environment 
in Nigeria.It was found that the SVR model outperformed both the ANFIS and the empirical models. Rohani et 
al.[18]have evaluated the performance of the Gaussian Process (GP) model for daily and monthly H prediction at 
Mashhad of Iran. Results of comparison between the GP model and other machines learning models in literature 
showed that this new model can be used to predict daily and monthly solar radiation with high accuracy. 

The interpolation techniques are used to estimate solar radiation at an unsampled site from measurements made at 
nearby stations[19]. In general, interpolation techniques are classifiedas deterministic and geostatistical.Deterministic 
methods create surfaces using mathematical functions, based on the degree of similarity or the degree of 
smoothness. Examples of these techniques are the spline-functions or weighted averages [20].On the other hand, 
geostatistical techniques generate the prediction surfaces using statistical models. These methods quantify the spatial 
autocorrelation among sampling data and evaluate the uncertainty of the obtained results[21].Among these 
methods, one of the most widely used are the kriging methods.Ertekin et al.[22] used universal Kriging to map the 
annual solar potential in Turkey.Cross-validation statistics indicated that this technique was sufficiently reliable to 
predict the spatial variability of the global solar radiation across the country.A comparative study between OK and 
Residual Kriging was carried out for the mapping of solar radiation in southern Spain. It was found that the 
Residual Kriging model outperformed the OK model especially, in the autumn and winter months [20].Inorder to 
determine the areas and the periods of the year with the greatest solar resourceMexico's golf course, Escobedo et al. 
[23] employed OK to construct monthly and annual solar maps of this region. In ref [24] the monthly solar 
radiationis estimated firstby a sunshine duration model. Then a topographical factor is applied before using the 
modeled data for mapping the solar resource in Koreausing OK.Oummi et al[25] characterized solar irradiation 
resource in Morocco with Neural Kriging using three inputs (latitude, longitude, and elevation), the authors 
indicated that the most interesting sites for solar power plant installation in the country are located in the southern, 
southeastern and some internal territories.From this brief review of the three models used in this study for 
modeling solar radiation, it can be noticed that the GP model is rarely employed.Besides, to the best of the authors’ 
knowledge,there is no comprehensive assessment of Moroccan solar resources at regional level. 
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The present study aims to achieve the following objectives: Firstly, to predict the monthly solar irradiation in 
Morocco using three machine learning techniques GP, SVR, and ANN,based on four input variables (latitude, 
month of the year,average temperature T, and relative humidity RH).Secondly,to compare thethree methods in 
terms of accuracy, stability, and computational time. Thirdly,to construct monthly and annual solar maps using OK 
at a regional scale, and to assign each region to its corresponding solar class. 

2. Methodology 

2.1. Study area and data collection 

Morocco is located in the subtropical zone of northwest Africa between latitudes 21N and 36N and longitudes 1W 
and 17W. It is bordered by the Atlantic Ocean to the west, the Mediterranean Sea to the north, Algeria to the east, 
and Mauritania to the south, with an area of750810 Km²[26].Since 2015, Morocco is divided into 12 regions. These 
regions are presented in Fig.1. The climate of the country varies according to the seasons and has many nuances: 
mediterranean to the north, oceanic to the west, continental ininternal regions,and Saharian to the south[27]. 
 

 

 

Fig 1.  The 12 administrative Regions of Morocco. 

Eighty-six locations representing different climatic regions in the country are used for collecting monthly weather 
datafrom RETScreen[28]and NASA[29]databases. These databasesincorporate observations from satellites (1983-
2005) and weather monitoring stations.The geographical locations of sites used in the present study arepresented in 
Fig .2.where solar irradiation data for 76 sites are provided by NASA and 10 from weather ground stations. 
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Fig 2. Geographical map of Morocco indicating the sites selected for the study. 

The monthly variations of RH, T, and H with increasing latitude varying between 21N and 36N, and for the whole 
country are shown in Fig.3. A clear dependence of Hon latitude can be observed. For the same latitudes, there are 
variationsin the climatic conditions represented by the parameters T and RH. Table 1 presents the monthly 
coefficient of variation (CV) forthe three parameters. The solar radiation H showed the lowestvariability compared 
to T and RH,the CV varies between 5.4% in September and 16% in December. Themaximum of CV relative to 
temperature was found to be 32% in January while the minimum was found to be11.8% in August and September. 
Concerning RH, its CV variesbetween25% in January and 46% in July.The solar radiation depends stronglyon 
months,the highest values for the whole territory are recorded in the months of May, June, and July with values 
equals to 7.16kWh/m².day, 7.3kWh/m².dayand 7.1kWh/m².dayrespectively, while the lowest values are observed 
during November, December, and January with respective values of 3.74kWh/m².day, 3.22kWh/m².dayand 
3.59kWh/m².day. The temperature variation is almost similar to that of Hbut the highest values occur in July and 
August with an average value of 27.38°C and 27.48°C respectively for the whole country and the lowest in January 
with an average value of 12.48°C. This is due to the inertia of theearth. The variation in RH isapproximately inverse 
to that of T and H.The maximum RH occurs in the winter months especially in December and January 
withrespective values of 55.12% and 55.53%,while the minimum in the summer months especially in July with a 
value of 41.74%. 
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Table 1:  Monthly values of CV for H, T, and RH. 

Months H (%) T (%) RH (%) 

January 

15 32 25 
February 

13 26 29 
March 

10 20 31 
April 

7.8 17 32 
May 

5.7 14 34 
June 

5,7 13 38 
July 

6.7 12 46 
August 

5.6 11.8 42 
September 

5.4 11.8 33.7 
October 

9.9 15 29 
November 

14.9 22 26 
December 

16 30 26 
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Fig 3. Monthly variation of (a) solar irradiation, (b) temperature and (c) relative humidity.  

2.2. Artificial Neural Networks 

Artificial Neural Networks are among the methods of artificial intelligence whose design has been inspired by the 
functioning of biological neurons. An ANN is considered as a black box that includes a series of equations that 

aims to map a set of input vectors {𝑋𝑖 },i=1: N to a set of output vectors {𝑍𝑖},i=1:Nand improves the outcome by 
repeated training[30].In the literature, several ANNsmodels are developed. Among these models, Multi-Layer 
Perceptron (MLP) networks are the most widely used. The structure of the (MLP) network consists of an input 
layer, an output layer, and one or several hidden layers. 
An elementary node k called neuron in an MLP network is shown in Fig.4.It includes a weighted sum of the input 

vectors𝑋𝑖 ∈ 𝑅𝑚, followed by a nonlinear operation with an activation function𝑓𝑘 .The output of the neuron k is 
defined as  

𝑎𝑘 = 𝑓𝑘(∑ 𝑤𝑗𝑘𝑥𝑗𝑖 + 𝑏𝑘
𝑚
𝑗=1 )   (1) 

where𝑥𝑗𝑖 is the jth component of the input vector 𝑋𝑖, 𝑤𝑗𝑘  is the jth component of the weight vector 𝑊and  𝑏𝑘 is the 

bias. 
This can be written in the matrix form as 

𝑎𝑘 = 𝑓𝑘(𝑊𝑇𝑋𝑖 + 𝑏𝑘) (2) 

where𝑋𝑖 = [𝑥1𝑖𝑥2𝑖 … … … . 𝑥𝑚𝑖]𝑇    𝑎𝑛𝑑    𝑊 = [𝑤1𝑘𝑤2𝑘 … … … 𝑤𝑚𝑘]𝑇 
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Fig 4. Structure of a single neuron. 

The nonlinear activation function used in this study is the hyperbolic tangent, given by  

𝑓(𝑛𝑘) = 𝑡𝑎𝑛ℎ (𝑛𝑘) =
𝑒𝑛𝑘−𝑒−𝑛𝑘

𝑒𝑛𝑘+𝑒−𝑛𝑘
  (3) 

 
For an MLP network with one hidden layer with hyperbolic tangent neurons followed by an output layer of linear 

neurons.The calculated output ℎ(𝑋) is given by 

ℎ(𝑋) = 𝐿𝑊∗(𝑡𝑎𝑛ℎ(𝐼𝑊∗𝑋 + 𝐵1)) + 𝐵2    (4) 
 

where𝐼𝑊 and𝐵1 are the inputs weights and bias matrix for connection from input to hidden layer respectively, 

and𝐿𝑊 and 𝐵2 are layer weights and bias matrix between the hidden layer and output layer.An example of an MLP 
network with one hidden layer is depicted in Fig.5.[31]. 
 

 

Fig 5. Structure of an MLP network with one hidden layer. 

The goal of ANN learning consists of adjusting the weights and bias with a learning algorithmto minimize a cost 
function defined by: 

𝐸 =
1

2
∑ 𝑒𝑖

2𝑁
𝑖=1 =

1

2
∑ (ℎ(𝑋𝑖) − 𝑍𝑖)2𝑁

𝑖=1   (5) 

 

where 𝑁thenumber of patterns,  ℎ(𝑋𝑖) is the calculated output,𝑍𝑖 is the desired output and 𝑒𝑖 = ℎ(𝑋𝑖) − 𝑍𝑖 is the 
training error[32]. 
 
There are different learning algorithms. A popular algorithm is the steepest descent algorithmbut this algorithm is 
often too slow for practical problems. Faster algorithms such as conjugate gradient, quasi-Newton, and Levenberg–
Marquardt (LM)are more efficient[33]. 
 
In this study, the (LM) algorithm has been used. It presents the advantages of Newton's methods and 
thesteepestgradient descent;in this case, the weights are adjusted as follows: 

𝑤𝑙+1 = 𝑤𝑙 − [𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒    (6) 
 
whereJis theJacobian matrix that contains the first derivatives of the network errors for the weights and biases,e is a 

vector of network errors, I is the identity matrix, and 𝜇is the step of learning [30]. 
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2.3. Support Vectors Machines Regression 

Support vector machines are powerful supervised learning techniques for both classification and regression. These 
techniques are based on statistical learning theory and the principle of structural risk minimization[14].In the 
context of regression, thebasic idea is to transform the input space into a high-dimensional space and learn a linear 
regression in the new space via the kernel trick[16].Considering the problem of approximating the set of data D= 

{𝑋𝑖 , 𝑍𝑖},i=1: N, the goal is to find the best function 𝑔 defined as follows: 

𝑔(𝑋) = 𝑊𝑇∅(𝑋) + 𝑏 (7) 
 

Where∅ is a nonlinear function that maps the inputs data into the high dimensional space, W and b represent the 
weights and the biasthat are determined by minimizing the regularized risk function 

𝑅 =
1

2
𝑊𝑇𝑊 + 𝐶 ∑ 𝐿𝜀(𝑔(𝑋𝑖), 𝑍𝑖)𝑁

𝑖  (8) 

 

The minimization of the term
1

2
𝑊𝑇𝑊will make the function as flat as possible, and regulate the degree of model 

complexity. The second term is the empirical error and C is a positive trade-off parameter between the degree of the 

empirical error and the model flatness. The 𝜀 −insensitive loss function𝐿𝜀 is defined as 

𝐿𝜀(𝑔(𝑋𝑖), 𝑍𝑖) = {
0 𝑓𝑜𝑟 ǀ𝑔(𝑋𝑖) − 𝑍𝑖ǀ ≤ 𝜀

ǀ𝑔(𝑋𝑖) − 𝑍𝑖ǀ − 𝜀𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9) 

 

Where 𝜀 is the radius of a region calledthe 𝜀-tube.The errors positioned in the 𝜀-tube are ignored and only the 
predicted points outside this region cause a loss equals to the magnitude of the difference between thepredicted 

value and the radius ε of the tube. Positiveslack variables 𝜉𝑖 and 𝜉𝑖
∗ are introduced to measure the deviation of the 

training sample outside the 𝜀-tube. 
 
The primal formulation of the regression problem can be formulated as follows 

𝑀𝑖𝑛
1

2
ǀǀ𝑤ǀǀ2 + 𝐶 ∑ (𝜉𝑖

𝑁
𝑖=1 + 𝜉𝑖

∗) (10) 

Subjected to {

𝑍𝑖 − 𝑊𝑇∅(𝑋𝑖) − 𝑏𝑖 ≤ 𝜀 + 𝜉𝑖

𝑍𝑖 − 𝑊𝑇∅(𝑋𝑖) − 𝑏𝑖 ≥ −𝜀 −

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

𝜉𝑖
∗ 

 

By introducing the Lagrange multipliers 𝛼and 𝛼∗this problem can be reformulated into dual problem formalism and 
written as follows 

𝑅(𝛼, 𝛼∗) = ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗) − 𝜀 ∑ (𝛼𝑖 − 𝛼𝑖

∗) −
1

2
∑ ∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝑋𝑖 , 𝑋𝑗)𝑁

𝑗=1
𝑁
𝑖=1

𝑁
𝑖=1

𝑁
𝑖=1                                                                                                                       

(11) 

With constraints 

∑(𝛼𝑖 − 𝛼𝑖
∗) = 0             

𝑁

𝑖=1

0 ≤ 𝛼𝑖 ≤ 𝐶       0 ≤ 𝛼𝑖
∗ ≤ 𝐶       𝑖 = 1: 𝑁 

where𝐾(𝑋𝑖 , 𝑋𝑗) = ∅(𝑋𝑖)𝑇∅(𝑋𝑗),K denotes the kernel function whose value equals the inner product of the 

nonlinear mapping functions of the inputs 𝑋𝑖 and 𝑋𝑗[15]. The kernel trick allows SVRs to compute this inner 

product without having to explicitly compute the map function ∅.After calculating Lagrange multipliers, the optimal 
desired weights vector of the regression is found as follows 
 

𝑊 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)∅(𝑋𝑖)𝑁

𝑖=1  (12) 
And the regression function is given by 

𝑔(𝑋) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑁

𝑖=1 𝐾(𝑋𝑖 , 𝑋) + 𝑏 (13) 
 
Any function satisfying Mercers conditions can be used as a kernel function[14]. In this work a Radial Basis 
Function (RBF) has been used, it is defined as follows 

𝐾(𝑋𝑖 , 𝑋𝑗) =  𝑒𝑥𝑝 (−
ǀǀ𝑋𝑖−𝑋𝑗ǀǀ2

2𝜎2 )   (14) 
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whereǀǀ𝑋𝑖 − 𝑋𝑗 ǀǀ2is the squared Euclidean distance between the two input vectors 𝑋 𝑖and 𝑋𝑗, and𝜎 is the bandwidth 

parameter of the RBF function[15]. 

2.4. Gaussian Process 

Gaussian processes regression (GP) is a well-established powerful nonparametric framework for nonlinear 
regression[34]. GP is an extension of multivariate normal random variables parameterized by a mean function m(X) 
and a covariance matrix k(X,X’) 

𝐺𝑃~ N (𝑚(𝑋), 𝑘(𝑋, 𝑋 ′) (15) 
 
where N denotes the standard normal distribution[35]. 
 

Let us now assume that we have observed a set of data D={𝑋𝑖 , 𝑍𝑖} 𝑖 = 1: 𝑁. A GPmodel for this data set can be 

specified as follows 𝑓(𝑋𝑖) = 𝑍𝑖 + 𝜀𝑖  with 𝜀𝑖 = 𝑁(0, 𝜎2)is Gaussian noise. In this study, we assume a zero mean 
function in the Gaussian Process prior and we choose squared exponential as a covariance function defined as 

𝑘(𝑋𝑖, 𝑋𝑗) = 𝜎𝑓
2𝑒𝑥𝑝 [−

1

2

(𝑋𝑖−𝑋𝑗)
𝑇

(𝑋𝑖−𝑋𝑗)

𝜎𝑙
2 ]  (16) 

 

where𝜎𝑓 is the signal standard deviation, and𝜎𝑙 is the characteristic length scale. Thehyperparameter 𝜎𝑓specifies the 

maximum allowable covariance, while 𝜎𝑙represents the rate of decay in correlation as points becomefarther away 

from each other[18].The function values 𝑍1: 𝑁jointly follow a multivariate Gaussian distribution 

as𝑍1:𝑁~N(0, 𝐾)where covariance matrix K is given as[36]: 

𝐾 = [
𝑘(𝑋1, 𝑋2) ⋯ 𝑘(𝑋1, 𝑋𝑁)

⋮ ⋱ ⋮
𝑘(𝑋𝑁 , 𝑋1) ⋯ 𝑘(𝑋𝑁 , 𝑋𝑛)

]           (17)  

 

For a new data point 𝑋∗then the joint distribution and the properties of the updated GP are given by  

⌊
𝑧1:𝑁

𝑍∗ ⌋ ~N(0, [
𝐾 + 𝜎2𝐼 𝑘

𝑘𝑇 𝑘(𝑋∗, 𝑋∗) + 𝜎2𝐼
])(18)  

where𝑘 = [𝑘(𝑋∗, 𝑋1) … . . 𝑘(𝑋∗, 𝑋𝑁)]𝑇 

𝑝(𝑍∗/𝑋∗ , 𝐷)~N(𝑚(𝑋∗), 𝜎2(𝑋∗))       (19)  
 
where the predictive mean and the variance aregiven as[36]: 

𝑚(𝑋∗) = 𝑘𝑇[𝐾 + 𝜎2𝐼]−1𝑍1:𝑁        (20) 

𝜎2(𝑋∗) = 𝑘(𝑋∗, 𝑋∗) − 𝑘𝑇[𝐾 + 𝜎2𝐼]−𝟏𝑘        (21) 

2.5. Ordinary Kriging 

Kriging is a geostatistical techniquebased on a variogram model that describes the spatial continuity of data.Kriging 

aimsto estimate the value of a regionalized variable 𝑍(𝑠0) at an unknown location from a set of scattered points 

with observed values 𝑍(𝑠𝑖)[37].Among several techniques of Kriging, OK is the most general and widely used[24]. 
 
In geostatistics, the variables are considered as spatial random variables, their values are just one of many infinitely 
that ispossible. For each, however, we have only a single realization. To make inferences, many realizations are 
required, so we consider that the process is stationary[38], strict stationarity assumes that the mean and the variance 
of the variable Z must depend only on the lag-distance h, this condition is very difficult to be verified[39]. 
Therefore, another weak assumption is considered and known as intrinsic stationarity. Itis expressed in two parts. 
 

The expectation of the deviations is zero 

𝐸(𝑍(𝑠 + ℎ) − 𝐸(𝑠)) = 0          (22) 

The variance of the deviations depends only on h 

𝑉𝑎𝑟(𝑍(𝑠 + ℎ) − 𝑍(𝑠)) = 𝐸 [(𝑍(𝑠 + ℎ) − 𝑍(𝑠))
2

]=2𝛾(ℎ)(23) 
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The estimated value �̂�(𝑠0) by the ordinary Krigingat a non-sampled site 𝑠0is a linear combination of the adjacent 

observations in sites 𝑠𝑖 . 

�̂�(𝑠0)= ∑ 𝜆𝑖𝑖 𝑍(𝑠𝑖)(24) 
 

To determine the optimal Kriging weights 𝜆𝑖,the Kriging estimator must be unbiased 𝐸(�̂�(𝑠0 ) − 𝑍(𝑠0)) = 0 which 

is guaranteed when ∑ 𝜆𝑖𝑖  =1and optimal when 𝑉𝑎𝑟(�̂� (𝑠0 ) − 𝑍(𝑠0)) is minimal. To obtain this objective, first, an 
experimental variogram is created from the scattered set of points. It can be written as follows 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑍(𝑠𝑖 + ℎ) − 𝑍(𝑠𝑖)

𝑁(ℎ)
𝑖=1 ]²   (25) 

where N (h) represents the points separated by the lag-distance h[20]. 

After that a well-defined modeled variogram is fitted using the trend in the experimental model, it is an increasing 
function of h. In this study, an exponential model has been used to fit the experimental variogram. 

𝛾(ℎ) = 𝐶0 + 𝐶1 [1 − 𝑒𝑥𝑝 (
−ℎ

𝑎
)]   (26) 

where𝐶0,𝐶1and𝑎 are called, respectively, nugget, partial sill, and range[24].The quantity 𝐶0 + 𝐶1 represents the value 

at which the model first flattens out and it is called sill.The nugget 𝐶0 is caused by sampling errors and the variation 
at a very short scale.The range a is the distance at which no spatial autocorrelation exists between samples[38]. 

Finally, theoptimal weights𝜆𝑖 are determined by solving the system of equations 

{
∑ 𝜆𝑖𝛾(𝑠𝑖 , 𝑠𝑗) − 𝜇 = 𝛾(𝑠𝑖 , 𝑠0)𝑛

𝑖=1

∑ 𝜆𝑖 = 1𝑛
𝑖=1

( 27) 

where 𝜇 is theLagrangemultiplier [39]. 

2.6. Implementation of models: 

In this study three script files were written in Matlab 2016b version for the development of the GP, SVRs,and 
ANNstechniques, while the ArcGIS 10.4.1 was used for the implementation of the OK technique.Before applying 
the ANNs and SVRs models, the data were standardized and scaled to the range [-1, 1] for the ANN model and 
between [0, 1] for the SVR model. For all models, the databaseis divided into two parts: 60% for training and 40% 
fortesting. To obtain the optimum architecture of the ANN model, the number of neurons in the hidden layer was 
changed from 1 to 30.In the case of OK, the best variogram model is selected through cross-validation, which 
consists of temporarily eliminating a point in the data set and then estimating its value by Kriging using the 
remaining data and the variogram model that has been adjusted. This operation is repeated for all points. 

2.1.  Statistical indicators for evaluation 

The performance of the predictive models was evaluated using the coefficient of determination R²,the root mean 
squared error RMSE, and themean absolute error MAE 

𝑅² = 1 −
∑ (�̂�𝑖−𝑍𝑖)2𝑁

𝑖=1

∑ (𝑍𝑖−𝑍𝑖)2𝑁
𝑖=1

(28) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (�̂�𝑖 − 𝑍𝑖)²𝑁

𝑖=1  (29) 

𝑀𝐴𝐸 =
1

𝑁
∑ (|�̂�𝑖 − 𝑍𝑖|𝑁

𝑖=1 )(30) 

 

whereN represents the total number of evaluating data,𝑍𝑖 and�̂�𝑖represent the measured and predicted solar 

radiation, respectively,and�̅�𝑖 is the mean of measuredvalues.The ideal R2 value for a model is 1while the ideal RMSE 
and MAE values are 0[40]. 
 
In the case of the OK, cross-validation is evaluated through the normalizedMean error NME, root mean squared 
error RMSE,and the normalized root of the mean squared error NRMSE 

NME =
1

N
∑ (N

i=1
Ẑ(si)−Z(si)

σ̂(si)
)  (31) 

RMSE = √
1

N
∑ (Ẑ(si) − Z(si))²N

i=1  (32) 
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NRMSE = √
1

N
∑

(Ẑ(si)−Z(si))²

σ̂(si)²
N
i=1  (33) 

whereZ(si) is the observed solar irradiation in a locationsi,Ẑ(si) is the estimated solar irradiation at the same 

location,σ̂(si)² is the Krigingvariance, and N is the total number of observations.The OK is better whenthe 
NMEand RMSE are close to zero and NRMSE is close to 1[41]. 

3. Results and discussion 

3.1. Predictivemodels 

Performances of GP, SVR, and ANN models are summarized in table 2.All models gave generally low values of the 
RMSE and MAE and high values of R2. Moreover, for all models, it is seen thatthe RMSE and MAE values 
increasedwhile the R² decreased relatively in the testingphase. 
 
It is seen fromTable 2 that the SVR model outperforms both GP and ANN models with respect to MAE statistics 
in the training and testing stages.The values of the training MAE for GP, SVR and ANN are (0.206, 0.167, 0.174 
kWh/m².day) while the values of the testing MAE are (0.234, 0.214, 0.232 kWh/m².day). 
 
Predicted values of the solar irradiation by the 3 machine learning models for training and testing phases are plotted 
against the measured values in Fig. 6. As can be seen in Fig (6-a), all points fall in the diagonal line, the SVR model 
has the highest coefficient of determination (R²=981), it is followed by the ANN model (R²=0.975) and finally the 
GP model (R²=0.965). In the testing stage Fig (6-b), the 3 models showed close results, the values of the coefficient 
of determination for SVR, GP, and ANN models are 0.966, 0.960, and 0.962, respectively. 

Table2: Statistical performances of SVR, GP, and ANN models. 

Models Structure 

R2 RMSE(kWh/m².day) MAE(kWh/m².day) 
 

Training Testing Training Testing Training Testing 
 

GP 
Squared 
exponential 

0.965 0.960 0.280 0.3 0.206 0.234 
 

SVR RBF Kernel 0.981 0.966 0.207 0.283 0,167 0.214 
 

ANN 20 neurons 0.975 0.963 0.235 0.297 0,174 0.232 
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  Fig 6. Correlation plots for the 3 models between predicted and observed solar irradiation for (a) training 
datasets, (b) testing datasets. 

The training and the testing RMSE, as well as its percentage increase, are shown in Fig.7, for the 3 studied models. 
The values of the training RMSE for GP, SVR and ANN are (0.28, 0.207, 0.235 kWh/m².day) while the values of 
the testing RMSE are (0.3, 0.283, 0.297 kWh/m².day).Based on these results, the six algorithms can be ranked based 
on their prediction accuracy from best to worst as follows: SVR, ANN, and GP. 
 
The stability of machine learning models is also an important factor toconsider when these techniques are adopted  
[42]. As seen from Fig.7, the GP algorithm is the most stable among the 3 models with the less percentage increase 
in the testing RMSE (7.1%) while the SVR model exhibited the largest increase in the testing RMSE (36.7%). 
Considering their stability, the algorithms can be ordered as follows: GP, ANN, and SVR. 
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Fig 7. Percentage increase in testing RMSE over training RMSE for the 3 machine learning models. 

Even if the prediction accuracy and the stability are primarily considered when using the machine learning models, 
the computational time of these models is also an important factor, especially when a huge amount of data is 
available [1].Fig.8 presents the averaged computational time of the 3 models using a single sample containing all 
dataset.The results indicated that the average time consumed by the GPmodel was much higher than those of the 
other algorithms, The GP time cost is approximately 14 and 24 much higher than the computational cost of the 
SVR and ANN models, respectively. 
 

 

Fig 8. Comparison of computational time used of the 3 machine learning models 

Based on the above results, the 3developed modelsGP, SVR, and ANN can be used with high reliability to estimate 
the monthly solar irradiation in Morocco from a few, simple, and quickly available parameters (T, RH,latitude,and 
the month of the year). Considering both the prediction accuracy and stability the GP model is highly 
recommended for predicting monthly H under different climatic conditions of Morocco. 
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3.2. Ordinary Kriging results 
 
The statistical indicators for the OK model are shown in table 3.The values of the NME are close to zero for all 
months, which means that the Kriging estimator is unbiased. The values of the RMSE are small and vary between 
0.205kWh/m².dayinJanuary and 0.366kWh/m².dayin June, and the NRMSE error values are close to 1 for all 
months indicating the good performance ofvariogram modeling. The resulting cross-validationerrors in the case of 
the annual solar irradiation are -0.00128kWh/m².dayfor NME, 0.248kWh/m².dayfor RMSE, and 1.018 for 
NRMSE. These results show that the OK gives fair estimates for the monthly and the annual solar irradiation in 
Morocco. 

Table3: Statistical indicators for the OK model. 

Months NME RMSE(kWh/m².day) NRMSE 

January -0.078 0.205 0.98 

February -0.001 0.259 1.06 

March -0.0168 0.303 1.02 

April -0.0093 0.329 0.99 

May -0.017 0.352 0.938 

June 0.0029 0.366 0.9 

July 0.0042 0.362 0.93 

August 0.0093 0.35 0.936 

September -0.006 0.28 1.02 

October -0.01 0.254 1.086 

November -0.016 0.236 1.1 

December -0.029 0.232 1.09 

Annual -0.0012 0.248 1.018 

 

3.3. Solar resource 

The OK technique is used to construct monthly and annual maps ofthe solar resource in Morocco andvisualizeits 
spatial distribution. For each month, the variability of the solar irradiationis due to the latitude coordinate and the 
climatic conditions.  
 
The solar resource in autumn is shown in Fig.9.As can be seen from this figure, solar irradiation decreases gradually 
from September to November.It varies between 4.97kWh/m².dayand 6.42kWh/m².dayin September, between 
3.63kWh/m².day and 5.83kWh/m².dayin October, and between 2.7kWh/m².day and 5.09kWh/m².dayin 
November. The highest values are observed during September in autumn equinox across the country. Moreover, 
the southern regions XII, XI, and X receive more solar radiation than the north and the northeast regions I, II, and 
III, especially in November and October. This season is characterized by fairly high temperatures and low relative 
humidity in the south and south-east and by lower temperatures and relatively high humidity in the north and 
internal regions. 
 
Fig.10displays the distribution of the solar resource in winter, the solar irradiationincreasesmoderately from 
December to February. The lowest values during the whole year are recorded in December at the winter solstice;it 
varies from a minimum value of 2.25kWh/m².day to a maximum value of 4.25kWh/m².day. At this month the sun 
is at its lowest position in the sky and the days are the shortest.On the other hand, the highestvalues in this season 
are observed in February with solar radiation ranging from 3.22kWh/m².day to 5.77kWh/m².day.Regions II,Iare the 
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less irradiated areas of the country; this is due to higher cloud activityresulting fromhigh relative humidity and very 
low temperatures. Consequently, this is the time of the year when abundant rains are observed. 

 

 

Fig 9. Solar irradiation maps for autumn months (a) September, (b) October, and (c) November. 
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Fig 10. Solar irradiation maps for winter months (a) December, (b) January and (c) February. 
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Fig 11. Solar irradiation maps for spring months (a) March, (b) April, and (c) May. 
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Fig 12. Solar irradiation maps for summer months (a) June, (b) July and (c) August. 

In spring, solar irradiation continues to increase;the spatial distribution of thesolar radiation in this season is shown 
in Fig.11. The lowest values are observed in March at equinox with a minimum value of4.41kWh/m².day, and a 
maximum value of 6.93kWh/m².dayand always with the same spatial distribution.  
 
As the sun gets higher in the sky, the high latitude regions in the center and the north of the country receivesmore 
solar radiation. The highest amounts of solar radiation are registered during May with valuesgreater than 
6.07kWh/m².day. In this season, the temperatures are high across the country and the relative humidity showsan 
increase from south to north. 
 
As is indicated in Fig.12, in summer, solar radiation decreases from June to August, and the highest solar potential is 
shifted to the northern part of the country.Regions I, IV, and IIbecome the most irradiated, while region XII is the 
less irradiated.The month of June at summer solstice is characterized by the highest values in the whole country 
ranging between 5.84kWh/m².dayand8kWh/m².day; this is due to the high position of the sun in the sky and the 
long hours of daylights. However, the month of August is characterized by the lowest solar resource, with a 
recording of 5.41kWh/m².dayto7.21kWh/m².day. During this season, solar radiation is generally very important 
acrossMorocco. Summer in the Saharian Desert is characterized by very high temperatures and a clear sky. In the 
northern and coastalregions, temperatures reach their peaks and the season is considered as the driest of the whole 
year. 
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The solar resource is expressed recently in terms of annual solar irradiation classes ranging from class1 (the lowest) 
to class7 (the highest)[8].This classification is presented in table 4. 

Table 4: Classes of solar irradiation potential. 

Solar irradiation class Solar resource potential  Annual solar irradiation(kWh/m².day) 

1 
2 
 
 

Poor 
Marginal 

<3.26 
3.26-3.88 

3 
4 

Fair 
Good 
 

3.88-4.49 
4.49-5 

5 
6 

Excellent 
Outstanding 
Suberb 
 

5-5.57 
5.57-6.08 
 
 
 

7 Superb > 6.08 

 
The geographic distribution of annualsolar resource in Morocco is shown in Fig.13,the solar potential varies 
between 4.6kWh/m².dayand6.33kWh/m².day.Based on this map and the solarresource classification,it can be 
noticed that the country has a high potential for solar energy,with more than 96 % of its total area is covered by 
excellent and outstanding classes. 

 

 
 

Fig 13. Annual solar irradiation map. 
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The ranking of the twelve regions according to their mean solar irradiation is displayed in Fig.14. It is clear from this 
figure that all regions have a solar resource that exceeds 5 kWh/m².day.Additionally, region XII has the most 
intense solar resource with all its area corresponds to the outstanding class, this class is also dominant in regions XI 
(90%) and X (73%) and represents (54%) and (23%) of the total areas of the regions VIII and X, respectively. 
Besides, all other regions correspond to the excellent potential, except for some areaswith good potential in region 
II (14% of the region). 
 

 

Fig 14. Ranking of regions according to theirsolar irradiation potential. 

The monthly and annual solaratlasesobtained by the OK method are in agreement with othermaps constructed with 
other databases and spanning different periods,like high-resolution maps obtained from SolarGIS 
company[43]covering the period 1994-2014,and those published by Ouammi et al[25]with data coming from (CM-
SAF)-PVGISdatabase representing the period from 1998 to 2010.Thisconfirms the high stability and non-volatility 
of Moroccan solar resourcefora long periodwhich is an essential factor for solar applications.In comparison to 
neighboring countries, the Moroccan solar potential is higher than those of Spain and Portugal which are dominated 
by the good and the fair classes[8],as well as the solar potential of Tunisia covered by the excellent, good, and fair 
classes[7]. However, it is lower than the solar potential of Algeria which 90 % of its total land is covered by the 
excellent, outstanding, and superb classes[44]. 
 
Even though the great potentialities of the Moroccan solar resource, the total photovoltaic (PV) capacity installed 
by the end of 2018 was only (205MW)which is lower than the installed capacity in Algeria(410MW), Portugal 
(670MW), and Spain (4744 MW)which is one of the world leaders in terms of installed PV technologies[45].At the 
same time, Morocco is the African leader in CSP(Concentrated solar power) systems with 500 MW installed 
capacity thanks to sites such as Noor Ouarzazate located in region VIII [45]. 
 
This simple and preliminary assessmentof the solar resource in Morocco reveals its immense potentialitiesespecially 
in regions XII, XI, and IX of the country. These regions are promising locations to host PV solar systems plants. 
However, some additional factors and constraints must be considered like environmental conditions that affect 
strongly the performances of PV modulesincluding dust accumulation, air temperatures, wind speed and direction, 
and relative humidity[46], as well asland use and economic conditions.Studies with Multi-Criteria Decision-
Makingare needed in these regions to choose suitable solar sites like those conducted in regions II[4]and VIII[47]. 
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Conclusion 

In this study,three machine learning techniquesGP,SVR, and ANN wereused and compared to predict monthly 
solar irradiation in 86 zones of Morocco using few and simple parameters.The three models had comparable 
prediction accuracy and can be applied successfully to estimate solar irradiation in any area in Morocco. The GP 
model provided the best combination of prediction accuracy and stability. However, it exhibited much 
computational cost. The spatial distribution of the solar potential was assessed and mapped using the OK;the 
results showed that Morocco has a large solar potential dominated by the excellent and the outstanding classes, 
particularly in the southern regions XII, XI, and IX.Further evaluation is required using more data collected in 
ground weather stations and using other geostatistical techniques that consider the effect of topography, as well as 
using the Multi-Criteria Decision-Making approach to select the suitable sites to host solar projects in the sunniest 
regions in the country. 
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